302 research outputs found

    Massive graviton as a testable cold dark matter candidate

    Full text link
    We construct a consistent model of gravity where the tensor graviton mode is massive, while linearized equations for scalar and vector metric perturbations are not modified. The Friedmann equation acquires an extra dark-energy component leading to accelerated expansion. The mass of the graviton can be as large as (1015cm)1\sim (10^{15}{cm})^{-1}, being constrained by the pulsar timing measurements. We argue that non-relativistic gravitational waves can comprise the cold dark matter and may be detected by the future gravitational wave searches.Comment: 4 pages, final version to appear in PR

    Peaks in the Cosmic Microwave Background: flat versus open models

    Get PDF
    We present properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We obtain analytical expressions of several topological descriptors: mean number of maxima and the probability distribution of the gaussian curvature and the eccentricity of the peaks. These quantities are calculated as functions of the radiation power spectrum, assuming a gaussian distribution of temperature anisotropies. We present results for angular resolutions ranging from 5' to 20' (antenna FWHM), scales that are relevant for the MAP and COBRAS/SAMBA space missions and the ground-based interferometer experiments. Our analysis also includes the effects of noise. We find that the number of peaks can discriminate between standard CDM models, and that the gaussian curvature distribution provides a useful test for these various models, whereas the eccentricity distribution can not distinguish between them.Comment: 13 pages latex file using aasms4.sty + 3 tables + 2 postscript figures, to appear in ApJ (March 1997

    Gauging the dark matter fraction in a LL_* S0 galaxy at z=0.47 through gravitational lensing from deep HST/ACS imaging

    Get PDF
    We analyze a new gravitational lens, OAC-GL J1223-1239, serendipitously found in a deep I-band image of the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). The lens is a L_*, edge-on S0 galaxy at z=0.4656. The gravitational arc has a radius of 0.42 arcsec. We have determined the total mass and the dark matter (DM) fraction within the Einstein radius as a function of the lensed source redshift, which is presently unknown. For z ~ 1.3, which is in the middle of the redshift range plausible for the source according to some external constraints, we find the central velocity dispersion to be ~180 km/s. With this value, close to that obtained by means of the Faber-Jackson relation at the lens redshift, we compute a 30% DM fraction within the Einstein radius (given the uncertainty in the source redshift, the allowed range for the DM fraction is 25-35 % in our lensing model). When compared with the galaxies in the local Universe, the lensing galaxy, OAC-GL J1223-1239 seems to fall in the transition regime between massive DM dominated galaxies and lower-mass, DM deficient systems.Comment: 18 pages, 5 figures; accepted for publication in Ap

    Status Update of the Parkes Pulsar Timing Array

    Full text link
    The Parkes Pulsar Timing Array project aims to make a direct detection of a gravitational-wave background through timing of millisecond pulsars. In this article, the main requirements for that endeavour are described and recent and ongoing progress is outlined. We demonstrate that the timing properties of millisecond pulsars are adequate and that technological progress is timely to expect a successful detection of gravitational waves within a decade, or alternatively to rule out all current predictions for gravitational wave backgrounds formed by supermassive black-hole mergers.Comment: 10 pages, 3 figures, Amaldi 8 conference proceedings, accepted by Classical & Quantum Gravit

    Gravitational wave detection using pulsars: status of the Parkes Pulsar Timing Array project

    Get PDF
    The first direct detection of gravitational waves may be made through observations of pulsars. The principal aim of pulsar timing array projects being carried out worldwide is to detect ultra-low frequency gravitational waves (f ~ 10^-9 to 10^-8 Hz). Such waves are expected to be caused by coalescing supermassive binary black holes in the cores of merged galaxies. It is also possible that a detectable signal could have been produced in the inflationary era or by cosmic strings. In this paper we review the current status of the Parkes Pulsar Timing Array project (the only such project in the Southern hemisphere) and compare the pulsar timing technique with other forms of gravitational-wave detection such as ground- and space-based interferometer systems.Comment: Accepted for publication in PAS

    Faraday rotation, stochastic magnetic fields and CMB maps

    Get PDF
    The high- and low-frequency descriptions of the pre-decoupling plasma are deduced from the Vlasov-Landau treatment generalized to curved space-times and in the presence of the relativistic fluctuations of the geometry. It is demonstrated that the interplay between one-fluid and two-fluid treatments is mandatory for a complete and reliable calculation of the polarization observables. The Einstein-Boltzmann hierarchy is generalized to handle the dispersive propagation of the electromagnetic disturbances in the pre-decoupling plasma. Given the improved physical and numerical framework, the polarization observables are computed within the magnetized Λ\LambdaCDM paradigm (mΛ\LambdaCDM). In particular, the Faraday-induced B-mode is consistently estimated by taking into account the effects of the magnetic fields on the initial conditions of the Boltzmann hierarchy, on the dynamical equations and on the dispersion relations. The complete calculations of the angular power spectra constitutes the first step for the derivation of magnetized maps of the CMB temperature and polarization which are here obtained for the first time and within the minimal mΛ\LambdaCDM model. The obtained results set the ground for direct experimental scrutiny of large-scale magnetism via the low and high frequency instruments of the Planck explorer satellite.Comment: 53 pages, 15 included figure

    Reconnection of Non-Abelian Cosmic Strings

    Full text link
    Cosmic strings in non-abelian gauge theories naturally gain a spectrum of massless, or light, excitations arising from their embedding in color and flavor space. This opens up the possibility that colliding strings miss each other in the internal space, reducing the probability of reconnection. We study the topology of the non-abelian vortex moduli space to determine the outcome of string collision. Surprisingly we find that the probability of classical reconnection in this system remains unity, with strings passing through each other only for finely tuned initial conditions. We proceed to show how this conclusion can be changed by symmetry breaking effects, or by quantum effects associated to fermionic zero modes, and present examples where the probability of reconnection in a U(N) gauge theory ranges from 1/N for low-energy collisions to one at higher energies.Comment: 25 Pages, 3 Figures. v2: comment added, reference adde
    corecore