85 research outputs found

    Classification of patients with knee osteoarthritis in clinical phenotypes: data from the osteoarthritis initiative

    Get PDF
    <div><p>Objectives</p><p>The existence of phenotypes has been hypothesized to explain the large heterogeneity characterizing the knee osteoarthritis. In a previous systematic review of the literature, six main phenotypes were identified: Minimal Joint Disease (MJD), Malaligned Biomechanical (MB), Chronic Pain (CP), Inflammatory (I), Metabolic Syndrome (MS) and Bone and Cartilage Metabolism (BCM). The purpose of this study was to classify a sample of individuals with knee osteoarthritis (KOA) into pre-defined groups characterized by specific variables that can be linked to different disease mechanisms, and compare these phenotypes for demographic and health outcomes.</p><p>Methods</p><p>599 patients were selected from the OAI database FNIH at 24 months’ time to conduct the study. For each phenotype, cut offs of key variables were identified matching the results from previous studies in the field and the data available for the sample. The selection process consisted of 3 steps. At the end of each step, the subjects classified were excluded from the further classification stages. Patients meeting the criteria for more than one phenotype were classified separately into a ‘complex KOA’ group.</p><p>Results</p><p>Phenotype allocation (including complex KOA) was successful for 84% of cases with an overlap of 20%. Disease duration was shorter in the MJD while the CP phenotype included a larger number of Women (81%). A significant effect of phenotypes on WOMAC pain (F = 16.736 p <0.001) and WOMAC physical function (F = 14.676, p < 0.001) was identified after controlling for disease duration.</p><p>Conclusion</p><p>This study signifies the feasibility of a classification of KOA subjects in distinct phenotypes based on subgroup-specific characteristics.</p></div

    Cholesterol and oxysterol sulfates:Pathophysiological roles and analytical challenges

    Get PDF
    Cholesterol and oxysterol sulfates are important regulators of lipid metabolism, inflammation, cell apoptosis, and cell survival. Among the sulfate-based lipids, cholesterol sulfate (CS) is the most studied lipid both quantitatively and functionally. Despite the importance, very few studies have analysed and linked the actions of oxysterol sulfates to their physiological and pathophysiological roles. Overexpression of sulfotransferases confirmed the formation of a range of oxysterol sulfates and their antagonistic effects on liver X receptors (LXRs) prompting further investigations how are the changes to oxysterol/oxysterol sulfate homeostasis can contribute to LXR activity in the physiological milieu. Here, we aim to bring together for novel roles of oxysterol sulfates, the available techniques and the challenges associated with their analysis. Understanding the oxysterol/oxysterol sulfate levels and their pathophysiological mechanisms could lead to new therapeutic targets for metabolic diseases

    The contribution of inherited genotype to breast cancer

    Get PDF
    The etiology of breast cancer is complex, and is likely to involve the actions of genes at multiple levels along the multistage carcinogenesis process. These inherited genotypes include those that affect the propensity to be exposed to breast carcinogens, and those associated with breast tumorigenesis directly. In addition, inherited genotypes may influence response to breast cancer chemoprevention and treatment. Studies relating inherited genotypes with breast cancer incidence and mortality should consider a broader spectrum of genes and their potential roles in multistage carcinogenesis than have been typically evaluated to date. Understanding the role of inherited genotype at different stages of carcinogenesis could improve our understanding of cancer biology, may identify specific exposures or events that correlate with carcinogenesis, or target relevant biochemical pathways for the development of preventive or therapeutic interventions

    Thiopurine Methyltransferase Predicts the Extent of Cytotoxicty and DNA Damage in Astroglial Cells after Thioguanine Exposure

    Get PDF
    Thiopurine methyltransferase (Tpmt) is the primary enzyme responsible for deactivating thiopurine drugs. Thiopurine drugs (i.e., thioguanine [TG], mercaptopurine, azathioprine) are commonly used for the treatment of cancer, organ transplant, and autoimmune disorders. Chronic thiopurine therapy has been linked to the development of brain cancer (most commonly astrocytomas), and Tpmt status has been associated with this risk. Therefore, we investigated whether the level of Tpmt protein activity could predict TG-associated cytotoxicity and DNA damage in astrocytic cells. We found that TG induced cytotoxicity in a dose-dependent manner in Tpmt+/+, Tpmt+/− and Tpmt−/− primary mouse astrocytes and that a low Tpmt phenotype predicted significantly higher sensitivity to TG than did a high Tpmt phenotype. We also found that TG exposure induced significantly more DNA damage in the form of single strand breaks (SSBs) and double strand breaks (DSBs) in primary astrocytes with low Tpmt versus high Tpmt. More interestingly, we found that Tpmt+/− astrocytes had the highest degree of cytotoxicity and genotoxicity (i.e., IC50, SSBs and DSBs) after TG exposure. We then used human glioma cell lines as model astroglial cells to represent high (T98) and low (A172) Tpmt expressers and found that A172 had the highest degree of cytoxicity and SSBs after TG exposure. When we over-expressed Tpmt in the A172 cell line, we found that TG IC50 was significantly higher and SSB's were significantly lower as compared to mock transfected cells. This study shows that low Tpmt can lead to greater sensitivity to thiopurine therapy in astroglial cells. When Tpmt deactivation at the germ-line is considered, this study also suggests that heterozygosity may be subject to the greatest genotoxic effects of thiopurine therapy

    The Intensive Diet and Exercise for Arthritis (IDEA) trial: design and rationale

    Get PDF
    Background: Obesity is the most modifiable risk factor, and dietary induced weight loss potentially the best nonpharmacologic intervention to prevent or to slow osteoarthritis (OA) disease progression. We are currently conducting a study to test the hypothesis that intensive weight loss will reduce inflammation and joint loads sufficiently to alter disease progression, either with or without exercise. This article describes the intervention, the empirical evidence to support it, and test-retest reliability data. Methods/Design: This is a prospective, single-blind, randomized controlled trial. The study population consists of 450 overweight and obese (BMI = 27-40.5 kg/m2) older (age greater than or equal to 55 yrs) adults with tibiofemoral osteoarthritis. Participants are randomized to one of three 18-month interventions: intensive dietary restriction-plus-exercise; exercise-only; or intensive dietary restriction-only. The primary aims are to compare the effects of these interventions on inflammatory biomarkers and knee joint loads. Secondary aims will examine the effects of these interventions on function, pain, and mobility; the dose response to weight loss on disease progression; if inflammatory biomarkers and knee joint loads are mediators of the interventions; and the association between quadriceps strength and disease progression. Results: Test-retest reliability results indicated that the ICCs for knee joint load variables were excellent, ranging from 0.86 - 0.98. Knee flexion/extension moments were most affected by BMI, with lower reliability with the highest tertile of BMI. The reliability of the semi-quantitative scoring of the knee joint using MRI exceeded previously reported results, ranging from a low of 0.66 for synovitis to a high of 0.99 for bone marrow lesion size. Discussion: The IDEA trial has the potential to enhance our understanding of the OA disease process, refine weight loss and exercise recommendations in this prevalent disease, and reduce the burden of disability. Originally published BMC Musculoskeletal Disorders, Vol. 10, No. 93, July 200

    Resistive Exercise for Arthritic Cartilage Health (REACH): A randomized double-blind, sham-exercise controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This article provides the rationale and methodology, of the first randomised controlled trial to our knowledge designed to assess the efficacy of progressive resistance training on cartilage morphology in women with knee osteoarthritis.</p> <p>Development and progression of osteoarthritis is multifactorial, with obesity, quadriceps weakness, joint malalignment, and abnormal mechanical joint forces particularly relevant to this study. Progressive resistance training has been reported to improve pain and disability in osteoarthritic cohorts. However, the disease-modifying potential of progressive resistance training for the articular cartilage degeneration characteristic of osteoarthritis is unknown. Our aim was to investigate the effect of high intensity progressive resistance training on articular cartilage degeneration in women with knee osteoarthritis.</p> <p>Methods</p> <p>Our cohort consisted of women over 40 years of age with primary knee osteoarthritis, according to the American College of Rheumatology clinical criteria. Primary outcome was blinded measurement of cartilage morphology via magnetic resonance imaging scan of the tibiofemoral joint. Secondary outcomes included walking endurance, balance, muscle strength, endurance, power, and velocity, body composition, pain, disability, depressive symptoms, and quality of life.</p> <p>Participants were randomized into a supervised progressive resistance training or sham-exercise group. The progressive resistance training group trained muscles around the hip and knee at 80% of their peak strength and progressed 3% per session, 3 days per week for 6 months. The sham-exercise group completed all exercises except hip adduction, but without added resistance or progression. Outcomes were repeated at 3 and 6 months, except for the magnetic resonance imaging scan, which was only repeated at 6 months.</p> <p>Discussion</p> <p>Our results will provide an evaluation of the disease-modifying potential of progressive resistance training for osteoarthritis.</p> <p>Trial Registration</p> <p>ANZCTR Reference No. 12605000116628</p

    R. N. Goodsell Wrote Rev. Albertus C. Van Raalte About Some Business and Contract Matters

    Get PDF
    R. N. Goodsell wrote Rev. Albertus C. Van Raalte about some business and contract matters. John Roost is mentioned in the letter.https://digitalcommons.hope.edu/vrp_1860s/1295/thumbnail.jp

    R. N. Goodsell Again Corresponded with Rev. Albertus C. Van Raalte About Business Matters Concerning the Holland Harbor Board

    Get PDF
    R. N. Goodsell again corresponded with Rev. Albertus C. Van Raalte about business matters concerning the Holland Harbor Board.https://digitalcommons.hope.edu/vrp_1860s/1297/thumbnail.jp
    corecore