182 research outputs found

    Coupling running through the Looking-Glass of dimensional Reduction

    Full text link
    The dimensional reduction, in a form of transition from four to two dimensions, was used in the 90s in a context of HE Regge scattering. Recently, it got a new impetus in quantum gravity where it opens the way to renormalizability and finite short-distance behavior. We consider a QFT model gφ4g\,\varphi^4\, with running coupling defined in both the two domains of different dimensionality; the \gbar(Q^2)\, evolutions being duly conjugated at the reduction scale QM.\,Q\sim M. Beyond this scale, in the deep UV 2-dim region, the running coupling does not increase any more. Instead, it {\it slightly decreases} and tends to a finite value \gbar_2(\infty) \,< \, \gbar_2(M^2)\, from above. As a result, the global evolution picture looks quite peculiar and can propose a base for the modified scenario of gauge couplings behavior with UV fixed points provided by dimensional reduction instead of leptoquarks.Comment: 8 pages, 4 figures,Version to match the one which (besides the Appendix) will appear in "Particles and Nuclei (PEPAN), Letters", v.7, No 6(162) 2010 pp 625-631. Slightly edited, one more reference and related numerical estimate adde

    Asymptotically free scalar curvature-ghost coupling in Quantum Einstein Gravity

    Full text link
    We consider the asymptotic-safety scenario for quantum gravity which constructs a non-perturbatively renormalisable quantum gravity theory with the help of the functional renormalisation group. We verify the existence of a non-Gaussian fixed point and include a running curvature-ghost coupling as a first step towards the flow of the ghost sector of the theory. We find that the scalar curvature-ghost coupling is asymptotically free and RG relevant in the ultraviolet. Most importantly, the property of asymptotic safety discovered so far within the Einstein-Hilbert truncation and beyond remains stable under the inclusion of the ghost flow.Comment: 8 pages, 3 figures, RevTe

    Critical behavior of the (2+1)-dimensional Thirring model

    Full text link
    We investigate chiral symmetry breaking in the (2+1)-dimensional Thirring model as a function of the coupling as well as the Dirac flavor number Nf with the aid of the functional renormalization group. For small enough flavor number Nf < Nfc, the model exhibits a chiral quantum phase transition for sufficiently large coupling. We compute the critical exponents of this second order transition as well as the fermionic and bosonic mass spectrum inside the broken phase within a next-to-leading order derivative expansion. We also determine the quantum critical behavior of the many-flavor transition which arises due to a competition between vector and chiral-scalar channel and which is of second order as well. Due to the problem of competing channels, our results rely crucially on the RG technique of dynamical bosonization. For the critical flavor number, we find Nfc ~ 5.1 with an estimated systematic error of approximately one flavor.Comment: 28 pages, 14 figure

    Questionable and unquestionable in the perturbation theory of non-Abelian models

    Get PDF
    We show, by explicit computation, that bare lattice perturbation theory in the two-dimensional O(n) nonlinear σ\sigma models with superinstanton boundary conditions is divergent in the limit of an infinite number of points Λ|\Lambda|. This is the analogue of David's statement that renormalized perturbation theory of these models is infrared divergent in the limit where the physical size of the box tends to infinity. We also give arguments which support the validity of the bare perturbative expansion of short-distance quantities obtained by taking the limit Λ|\Lambda|\to\infty term by term in the theory with more conventional boundary conditions such as Dirichlet, periodic, and free.Comment: One reference added to the published version, 28 pages, 3 figure

    Quantum Einstein Gravity

    Full text link
    We give a pedagogical introduction to the basic ideas and concepts of the Asymptotic Safety program in Quantum Einstein Gravity. Using the continuum approach based upon the effective average action, we summarize the state of the art of the field with a particular focus on the evidence supporting the existence of the non-trivial renormalization group fixed point at the heart of the construction. As an application, the multifractal structure of the emerging space-times is discussed in detail. In particular, we compare the continuum prediction for their spectral dimension with Monte Carlo data from the Causal Dynamical Triangulation approach.Comment: 87 pages, 13 figures, review article prepared for the New Journal of Physics focus issue on Quantum Einstein Gravit

    Emergence of a 4D World from Causal Quantum Gravity

    Full text link
    Causal Dynamical Triangulations in four dimensions provide a background-independent definition of the sum over geometries in nonperturbative quantum gravity, with a positive cosmological constant. We present evidence that a macroscopic four-dimensional world emerges from this theory dynamically.Comment: 11 pages, 3 figures; some short clarifying comments added; final version to appear in Phys. Rev. Let

    Relativistic Quantum Gravity at a Lifshitz Point

    Full text link
    We show that the Horava theory for the completion of General Relativity at UV scales can be interpreted as a gauge fixed theory, and it can be extended to an invariant theory under the full group of four-dimensional diffeomorphisms. In this respect, although being fully relativistic, it results to be locally anisotropic in the time-like and space-like directions defined by a family of irrotational observers. We show that this theory propagates generically three degrees of freedom: two of them are related to the four-dimensional diffeomorphism invariant graviton (the metric) and one is related to a propagating scalar mode. Finally, we note that in the present formulation, matter can be consistently coupled to gravity.Comment: v4: Erratum added: explanation on the true dynamical fields of the relativistic theory added. The theory is interpreted as a Tensor-Scalar relativistic theory. Reference added. Version accepted in JHE

    Coulomb excitation of 68^{68}Ni at safe energies

    Get PDF
    The B(E2;0+2+)B(E2;0^+\to2^+) value in 68^{68}Ni has been measured using Coulomb excitation at safe energies. The 68^{68}Ni radioactive beam was post-accelerated at the ISOLDE facility (CERN) to 2.9 MeV/u. The emitted γ\gamma rays were detected by the MINIBALL detector array. A kinematic particle reconstruction was performed in order to increase the measured c.m. angular range of the excitation cross section. The obtained value of 2.81.0+1.2^{+1.2}_{-1.0} 102^2 e2^2fm4^4 is in good agreement with the value measured at intermediate energy Coulomb excitation, confirming the low 0+2+0^+\to2^+ transition probability.Comment: 4 pages, 5 figure

    From Big Bang to Asymptotic de Sitter: Complete Cosmologies in a Quantum Gravity Framework

    Full text link
    Using the Einstein-Hilbert approximation of asymptotically safe quantum gravity we present a consistent renormalization group based framework for the inclusion of quantum gravitational effects into the cosmological field equations. Relating the renormalization group scale to cosmological time via a dynamical cutoff identification this framework applies to all stages of the cosmological evolution. The very early universe is found to contain a period of ``oscillatory inflation'' with an infinite sequence of time intervals during which the expansion alternates between acceleration and deceleration. For asymptotically late times we identify a mechanism which prevents the universe from leaving the domain of validity of the Einstein-Hilbert approximation and obtain a classical de Sitter era.Comment: 47 pages, 17 figure

    Infrared fixed point in quantum Einstein gravity

    Get PDF
    We performed the renormalization group analysis of the quantum Einstein gravity in the deep infrared regime for different types of extensions of the model. It is shown that an attractive infrared point exists in the broken symmetric phase of the model. It is also shown that due to the Gaussian fixed point the IR critical exponent ν\nu of the correlation length is 1/2. However, there exists a certain extension of the model which gives finite correlation length in the broken symmetric phase. It typically appears in case of models possessing a first order phase transitions as is demonstrated on the example of the scalar field theory with a Coleman-Weinberg potential.Comment: 9 pages, 7 figures, final version, to appear in JHE
    corecore