200 research outputs found

    Suitability of switchgrass (Panicum virgatum L.) as a forage crop in the Mediterranean area

    Get PDF
    In Mediterranean rainfed cropping systems, drought-resistant crops can increase yield and availability of forage during the summer period. In North America, switchgrass (Panicum virgatum L.) has been used for decades as pasture and fodder. In Europe, switchgrass has been investigated mainly for its potential as an energy crop. e overall aim of the present study was to analyse the suitability of switchgrass as a forage crop in a Mediterranean environment. A eld trial was carried out in Central Italy (Pisa) to evaluate the productivity and nutritive value in mature stands of two switchgrass varieties (Alamo and Blackwell). Alamo reached the maturity for hay harvest (boot stage) in August, about one-month delay with respect to Blackwell. At this stage, the biomass was 13.3 and 7.5 t ha-1 of dry matter (DM) in Alamo and Blackwell, respectively. Both varieties produced a summer regrowth harvested in autumn. Nutritive value declined during the growing season due to the increase of bre and the reduction of protein content. Saponin content signi cantly di ered between varieties and according to the growth stage, ranging from 1.8 to 4.5 mg g-1 DM. is study provides useful knowledge to favour the introduction of perennial grasses as forage crops in the Mediterranean, leading to several environmental bene ts when compared with the annual species that currently cover half of the forage cropland in Tuscany

    Measurement properties of the Minimal Insomnia Symptom Scale (MISS) in an elderly population in Sweden

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insomnia is common among elderly people and associated with poor health. The Minimal Insomnia Symptom Scale (MISS) is a three item screening instrument that has been found to be psychometrically sound and capable of identifying insomnia in the general population (20-64 years). However, its measurement properties have not been studied in an elderly population. Our aim was to test the measurement properties of the MISS among people aged 65 + in Sweden, by replicating the original study in an elderly sample.</p> <p>Methods</p> <p>Data from a cross-sectional survey of 548 elderly individuals were analysed in terms of assumptions of summation of items, floor/ceiling effects, reliability and optimal cut-off score by means of ROC-curve analysis and compared with self-reported insomnia criteria.</p> <p>Results</p> <p>Corrected item-total correlations ranged between 0.64-0.70, floor/ceiling effects were 6.6/0.6% and reliability was 0.81. ROC analysis identified the optimal cut-off score as ≥7 (sensitivity, 0.93; specificity, 0.84; positive/negative predictive values, 0.256/0.995). Using this cut-off score, the prevalence of insomnia in the study sample was 21.7% and most frequent among women and the oldest old.</p> <p>Conclusions</p> <p>Data support the measurement properties of the MISS as a possible insomnia screening instrument for elderly persons. This study make evident that the MISS is useful for identifying elderly people with insomnia-like sleep problems. Further studies are needed to assess its usefulness in identifying clinically defined insomnia.</p

    Omega-3 Fatty Acids Modify Human Cortical Visual Processing—A Double-Blind, Crossover Study

    Get PDF
    While cardiovascular and mood benefits of dietary omega-3 fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are manifest, direct neurophysiological evidence of their effects on cortical activity is still limited. Hence we chose to examine the effects of two proprietary fish oil products with different EPA∶DHA ratios (EPA-rich, high EPA∶DHA; DHA-rich) on mental processing speed and visual evoked brain activity. We proposed that nonlinear multifocal visual evoked potentials (mfVEP) would be sensitive to any alteration of the neural function induced by omega-3 fatty acid supplementation, because the higher order kernel responses directly measure the degree of recovery of the neural system as a function of time following stimulation. Twenty-two healthy participants aged 18–34, with no known neurological or psychiatric disorder and not currently taking any nutritional supplementation, were recruited. A double-blind, crossover design was utilized, including a 30-day washout period, between two 30-day supplementation periods of the EPA-rich and DHA-rich diets (with order of diet randomized). Psychophysical choice reaction times and multi-focal nonlinear visual evoked potential (VEP) testing were performed at baseline (No Diet), and after each supplementation period. Following the EPA-rich supplementation, for stimulation at high luminance contrast, a significant reduction in the amplitude of the first slice of the second order VEP kernel response, previously related to activation in the magnocellular pathway, was observed. The correlations between the amplitude changes of short latency second and first order components were significantly different for the two supplementations. Significantly faster choice reaction times were observed psychophysically (compared with baseline performance) under the EPA-rich (but not DHA-rich) supplementation, while simple reaction times were not affected. The reduced nonlinearities observed under the EPA-rich diet suggest a mechanism involving more efficient neural recovery of magnocellular-like visual responses following cortical activation

    Different Temporal Structure for Form versus Surface Cortical Color Systems – Evidence from Chromatic Non-Linear VEP

    Get PDF
    Physiological studies of color processing have typically measured responses to spatially varying chromatic stimuli such as gratings, while psychophysical studies of color include color naming, color and light, as well as spatial and temporal chromatic sensitivities. This raises the question of whether we have one or several cortical color processing systems. Here we show from non-linear analysis of human visual evoked potentials (VEP) the presence of distinct and independent temporal signatures for form and surface color processing. Surface color stimuli produced most power in the second order Wiener kernel, indicative of a slowly recovering neural system, while chromatic form stimulation produced most power in the first order kernel (showing rapid recovery). We find end-spectral saturation-dependent signals, easily separable from achromatic signals for surface color stimuli. However physiological responses to form color stimuli, though varying somewhat with saturation, showed similar waveform components. Lastly, the spectral dependence of surface and form color VEP was different, with the surface color responses almost vanishing with yellow-grey isoluminant stimulation whereas the form color VEP shows robust recordable signals across all hues. Thus, surface and form colored stimuli engage different neural systems within cortex, pointing to the need to establish their relative contributions under the diverse chromatic stimulus conditions used in the literature

    Plasma Dynamics

    Get PDF
    Contains table of contents for Section 2 and reports on three research projects.National Science Foundation Grant ECS 89-02990U.S. Air Force - Office of Scientific Research Grant F49620-93-1-0108U.S. Army - Harry Diamond Laboratories Contract DAAL02-92-K-0037U.S. Department of Energy Grant DE-FG02-91-ER-40648U.S. Navy - Office of Naval Research Grant N00014-90-J-4130National Aeronautics and Space Administration Grant NAGW-2048National Science Foundation Grant ECS 88-22475U.S. Department of Energy Grant DE-FG02-91-ER-54109Magnetic Fusion Science Fellowship Progra

    Atypical Balance between Occipital and Fronto-Parietal Activation for Visual Shape Extraction in Dyslexia

    Get PDF
    Reading requires the extraction of letter shapes from a complex background of text, and an impairment in visual shape extraction would cause difficulty in reading. To investigate the neural mechanisms of visual shape extraction in dyslexia, we used functional magnetic resonance imaging (fMRI) to examine brain activation while adults with or without dyslexia responded to the change of an arrow’s direction in a complex, relative to a simple, visual background. In comparison to adults with typical reading ability, adults with dyslexia exhibited opposite patterns of atypical activation: decreased activation in occipital visual areas associated with visual perception, and increased activation in frontal and parietal regions associated with visual attention. These findings indicate that dyslexia involves atypical brain organization for fundamental processes of visual shape extraction even when reading is not involved. Overengagement in higher-order association cortices, required to compensate for underengagment in lower-order visual cortices, may result in competition for top-down attentional resources helpful for fluent reading.Ellison Medical FoundationMartin Richmond Memorial FundNational Institutes of Health (U.S.). (Grant UL1RR025758)National Institutes of Health (U.S.). (Grant F32EY014750-01)MIT Class of 1976 (Funds for Dyslexia Research

    Cortical Modulation of the Transient Visual Response at Thalamic Level: A TMS Study

    Get PDF
    The transient visual response of feline dorsal lateral geniculate nucleus (dLGN) cells was studied under control conditions and during the application of repetitive transcranial magnetic stimulation at 1 Hz (rTMS@1Hz) on the primary visual cortex (V1). The results show that rTMS@1Hz modulates the firing mode of Y cells, inducing an increase in burst spikes and a decrease in tonic firing. On the other hand, rTMS@1Hz modifies the spatiotemporal characteristics of receptive fields of X cells, inducing a delay and a decrease of the peak response, and a change of the surround/center amplitude ratio of RF profiles. These results indicate that V1 controls the activity of the visual thalamus in a different way in the X and Y pathways, and that this feedback control is consistent with functional roles associated with each cell type

    Plasma Dynamics

    Get PDF
    Contains table of contents for Section 2 and reports on four research projects.National Science Foundation Grant ECS-89-02990U.S. Air Force - Office of Scientific Research Grant AFOSR 89-0082-CU.S. Army - Harry Diamond Laboratories Contract DAAL02-89-K-0084U.S. Army - Harry Diamond Laboratories Contract DAAL02-92-K-0037U.S. Department of Energy Contract DE-AC02-90ER-40591U.S. Navy - Office of Naval Research Grant N00014-90-J-4130Lawrence Livermore National Laboratories Subcontract B-160456National Aeronautics and Space Administration Grant NAGW-2048National Science Foundation Grant ECS-88-22475U.S. Department of Energy Grant DE-FG02-91-ER-5410
    • …
    corecore