27 research outputs found

    Conservation and divergence of known apicomplexan transcriptional regulons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The apicomplexans are a diverse phylum of parasites causing an assortment of diseases including malaria in a wide variety of animals and lymphoproliferation in cattle. Little is known about how these varied parasites regulate their transcriptional regulons. Even less is known about how regulon systems, consisting of transcription factors and target genes together with their associated biological process, evolve in these diverse parasites.</p> <p>Results</p> <p>In order to obtain insights into the differences in transcriptional regulation between these parasites we compared the orthology profiles of putative malaria transcription factors across species and examined the enrichment patterns of four binding sites across eleven apicomplexans.</p> <p>About three-fifths of the factors are broadly conserved in several phylogenetic orders of sequenced apicomplexans. This observation suggests the existence of regulons whose regulation is conserved across this ancient phylum. Transcription factors not broadly conserved across the phylum are possibly involved in regulon systems that have diverged between species. Examining binding site enrichment patterns in light of transcription factor conservation patterns suggests a second mode via which regulon systems may diverge - rewiring of existing transcription factors and their associated binding sites in specific ways. Integrating binding sites with transcription factor conservation patterns also facilitated prediction of putative regulators for one of the binding sites.</p> <p>Conclusions</p> <p>Even though transcription factors are underrepresented in apicomplexans, the distribution of these factors and their associated regulons reflect common and family-specific transcriptional regulatory processes.</p

    Odontogenic tumors and giant cell lesions of jaws - a nine year study

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>A definite geographic variation has been observed in the frequency of odontogenic tumors and giant cell lesions of the jaws reported from different parts of the world. However, there are a few studies on these lesions, especially giant cell lesions, reported from India. Hence, this study was designed to provide a demographic data on the odontogenic tumors and giant cell lesions reported from our institute located in the city of Hyderabad. Hyderabad is the capital city of the southern state of Andhra Pradesh in India. A retrospective analysis of odontogenic tumors and giant cell lesions of jaws reported in our institute between the years 2000 and 2009 was done and this data was compared with previous reports from different parts of the world and India.</p> <p>Methods</p> <p>Biopsies of the lesions received between the years 2000 and 2009 were reviewed and patient's history, clinical, radiological and histopathological characteristics were analyzed.</p> <p>Results</p> <p>A total of 77 biopsies were received during the nine year study period. These lesions were more frequently seen in the males, in a younger age group and showed a predilection for the mandible. Most of them presented as radiolucent, slow growing and painless lesions. Ameloblastomas (71.4%) constituted the majority of odontogenic tumors while central giant cell granulomas (7.8%) constituted the majority of giant cell lesions.</p> <p>Conclusion</p> <p>These lesions showed a definite geographic variation with ameloblastomas being the most common odontogenic tumors and odontomas being relatively rarer lesions in our region.</p

    O6-methylguanine-DNA-methyltransferase expression and gene polymorphisms in relation to chemotherapeutic response in metastatic melanoma

    Get PDF
    In a retrospective study, O6-methylguanine-DNA-methyltransferase (MGMT) expression was analysed by immunohistochemistry using monoclonal human anti-MGMT antibody in melanoma metastases in patients receiving dacarbazine (DTIC) as single-drug therapy or as part of combination chemotherapy with DTIC–vindesine or DTIC–vindesine–cisplatin. The correlation of MGMT expression levels with clinical response to chemotherapy was investigated in 79 patients with metastatic melanoma. There was an inverse relationship between MGMT expression and clinical response to DTIC-based chemotherapy (P=0.05). Polymorphisms in the coding region of the MGMT gene were also investigated in tumours from 52 melanoma patients by PCR/SSCP and nucleotide sequence analyses. Single-nucleotide polymorphisms (SNPs) in exon 3 (L53L and L84F) and in exon 5 (I143V/K178R) were identified. There were no differences in the frequencies of these polymorphisms between these melanoma patients and patients with familial melanoma or healthy Swedish individuals. Functional analysis of variants MGMT-I143V and -I143V/K178R was performed by in vitro mutagenesis in Escherichia coli. There was no evidence that these variants decreased the MGMT DNA repair activity compared to the wild-type protein. All melanoma patients with the MGMT 53/84 polymorphism except one had tumours with high MGMT expression. There was no significant correlation between any of the MGMT polymorphisms and clinical response to chemotherapy, although an indication of a lower response rate in patients with SNPs in exon 5 was obtained. Thus, MGMT expression appears to be more related to response to chemotherapy than MGMT polymorphisms in patients with metastatic melanoma

    Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation.

    Get PDF
    Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence

    Involvement of a Toxoplasma gondii Chromatin Remodeling Complex Ortholog in Developmental Regulation

    Get PDF
    The asexual cycle of the parasite Toxoplasma gondii has two developmental stages: a rapidly replicating form called a tachyzoite and a slow growing cyst form called a bradyzoite. While the importance of ATP-independent histone modifications for gene regulation in T. gondii have been demonstrated, ATP-dependent chromatin remodeling pathways have not been examined. In this study we characterized C9, an insertional mutant showing reduced expression of bradyzoite differentiation marker BAG1, in cultured human fibroblasts. This mutant contains an insertion in the gene encoding TgRSC8, which is homologous to the Saccharomyces cerevisiae proteins Rsc8p (remodel the structure of chromatin complex subunit 8) and Swi3p (switch/sucrose non-fermentable [SWI/SNF]) of ATP-dependent chromatin-remodeling complexes. In the C9 mutant, TgRSC8 is the downstream open reading frame on a dicistronic transcript. Though protein was expressed from the downstream gene of the dicistron, TgRSC8 levels were decreased in C9 from those of wild-type parasites, as determined by western immunoblot and flow cytometry. As TgRSC8 localized to the parasite nucleus, we postulated a role in gene regulation. Transcript levels of several markers were assessed by quantitative PCR to test this hypothesis. The C9 mutant displayed reduced steady state transcript levels of bradyzoite-induced genes BAG1, LDH2, SUSA1, and ENO1, all of which were significantly increased with addition of TgRSC8 to the mutant. Transcript levels of some bradyzoite markers were unaltered in C9, or unable to be increased by complementation with TgRSC8, indicating multiple pathways control bradyzoite-upregulated genes. Together, these data suggest a role for TgRSC8 in control of bradyzoite-upregulated gene expression. Thus chromatin remodeling, by both ATP-independent and dependent mechanisms, is an important mode of gene regulation during stage differentiation in parasites

    Escherichia coli genome-wide promoter analysis: Identification of additional AtoC binding target elements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies on bacterial signal transduction systems have revealed complex networks of functional interactions, where the response regulators play a pivotal role. The AtoSC system of <it>E. coli </it>activates the expression of <it>atoDAEB </it>operon genes, and the subsequent catabolism of short-chain fatty acids, upon acetoacetate induction. Transcriptome and phenotypic analyses suggested that <it>atoSC </it>is also involved in several other cellular activities, although we have recently reported a palindromic repeat within the <it>atoDAEB </it>promoter as the single, <it>cis</it>-regulatory binding site of the AtoC response regulator. In this work, we used a computational approach to explore the presence of yet unidentified AtoC binding sites within other parts of the <it>E. coli </it>genome.</p> <p>Results</p> <p>Through the implementation of a computational <it>de novo </it>motif detection workflow, a set of candidate motifs was generated, representing putative AtoC binding targets within the <it>E. coli </it>genome. In order to assess the biological relevance of the motifs and to select for experimental validation of those sequences related robustly with distinct cellular functions, we implemented a novel approach that applies Gene Ontology Term Analysis to the motif hits and selected those that were qualified through this procedure. The computational results were validated using Chromatin Immunoprecipitation assays to assess the <it>in vivo </it>binding of AtoC to the predicted sites. This process verified twenty-two additional AtoC binding sites, located not only within intergenic regions, but also within gene-encoding sequences.</p> <p>Conclusions</p> <p>This study, by tracing a number of putative AtoC binding sites, has indicated an AtoC-related cross-regulatory function. This highlights the significance of computational genome-wide approaches in elucidating complex patterns of bacterial cell regulation.</p

    Identification and Genome-Wide Prediction of DNA Binding Specificities for the ApiAP2 Family of Regulators from the Malaria Parasite

    Get PDF
    The molecular mechanisms underlying transcriptional regulation in apicomplexan parasites remain poorly understood. Recently, the Apicomplexan AP2 (ApiAP2) family of DNA binding proteins was identified as a major class of transcriptional regulators that are found across all Apicomplexa. To gain insight into the regulatory role of these proteins in the malaria parasite, we have comprehensively surveyed the DNA-binding specificities of all 27 members of the ApiAP2 protein family from Plasmodium falciparum revealing unique binding preferences for the majority of these DNA binding proteins. In addition to high affinity primary motif interactions, we also observe interactions with secondary motifs. The ability of a number of ApiAP2 proteins to bind multiple, distinct motifs significantly increases the potential complexity of the transcriptional regulatory networks governed by the ApiAP2 family. Using these newly identified sequence motifs, we infer the trans-factors associated with previously reported plasmodial cis-elements and provide evidence that ApiAP2 proteins modulate key regulatory decisions at all stages of parasite development. Our results offer a detailed view of ApiAP2 DNA binding specificity and take the first step toward inferring comprehensive gene regulatory networks for P. falciparum
    corecore