88 research outputs found
Adaptive Parametric Routing Based on Dynamic Metrics for Wireless Sensor Networks
International audienceDesigning a QoS-aware, yet energy-saving routing protocol for WSNs is a notoriously hard problem. However, the outstanding interest for this technology, and the growing number of envisioned applications, motivate the need to introduce the notion of Quality of Service (QoS) in these networks. This paper introduces EDEAR (Energy and Delay Efficient Adaptive Routing), an adaptive routing algorithm based on route exploration and reinforcement learning. We evaluate EDEAR with simulations, under various network mobility conditions. Our results show that EDEAR outperforms any other routing protocol, delivering packets with the shortest delay, while reducing energy consumption. As a result, EDEAR's features allow to increase the network lifetime by 9-18
Characterization of immunoglobulin G antibodies to Plasmodium falciparum sporozoite surface antigen MB2 in malaria exposed individuals
<p>Abstract</p> <p>Background</p> <p>MB2 protein is a sporozoite surface antigen on the human malaria parasite <it>Plasmodium falciparum</it>. MB2 was identified by screening a <it>P. falciparum </it>sporozoite cDNA expression library using immune sera from a protected donor immunized via the bites of <it>P. falciparum</it>-infected irradiated mosquitoes. It is not known whether natural exposure to <it>P. falciparum </it>also induces the anti-MB2 response and if this response differs from that in protected individuals immunized via the bites of <it>P. falciparum </it>infected irradiated mosquitoes. The anti-MB2 antibody response may be part of a robust protective response against the sporozoite.</p> <p>Methods</p> <p>Fragments of polypeptide regions of MB2 were constructed as recombinant fusions sandwiched between glutathione S-transferase and a hexa histidine tag for bacterial expression. The hexa histidine tag affinity purified proteins were used to immunize rabbits and the polyclonal sera evaluated in an <it>in vitro </it>inhibition of sporozoite invasion assay. The proteins were also used in immunoblots with sera from a limited number of donors immunized via the bites of <it>P. falciparum </it>infected irradiated mosquitoes and plasma and serum obtained from naturally exposed individuals in Kenya.</p> <p>Results</p> <p>Rabbit polyclonal antibodies targeting the non-repeat region of the basic domain of MB2 inhibited sporozoites entry into HepG2-A16 cells <it>in vitro</it>. Analysis of serum from five human volunteers that were immunized via the bites of <it>P. falciparum </it>infected irradiated mosquitoes that developed immunity and were completely protected against subsequent challenge with non-irradiated parasite also had detectable levels of antibody against MB2 basic domain. In contrast, in three volunteers not protected, anti-MB2 antibodies were below the level of detection. Sera from protected volunteers preferentially recognized a non-repeat region of the basic domain of MB2, whereas plasma from naturally-infected individuals also had antibodies that recognize regions of MB2 that contain a repeat motif in immunoblots. Sequence analysis of eleven field isolates and four laboratory strains showed that these antigenic regions of the basic domain of the <it>MB2 </it>gene are highly conserved in parasites obtained from different parts of the world. Moreover, anti-MB2 antibodies also were detected in the plasma of 83% of the individuals living in a malaria endemic area of Kenya (n = 41).</p> <p>Conclusion</p> <p>A preliminary analysis of the human humoral response against MB2 indicates that it may be an additional highly conserved target for immune intervention at the pre-erythrocytic stage of <it>P. falciparum </it>life cycle.</p
Delineation of Stage Specific Expression of Plasmodium falciparum EBA-175 by Biologically Functional Region II Monoclonal Antibodies
EBA-175 binds its receptor sialic acids on glycophorin A when invading erythrocytes. The receptor-binding region (RII) contains two cysteine-rich domains with similar cysteine motifs (F1 and F2). Functional relationships between F1 and F2 domains and characterization of EBA-175 were studied using specific monoclonal antibodies (mAbs) against these domains..The role of the F1 and F2 domains in erythrocyte invasion and binding was elucidated with mAbs. These mAbs interfere with native EBA-175 binding to erythrocyte in a synergistic fashion. The stage specific expression of EBA-175 showed that the primary focus of activity was the merozoite stage. A recombinant RII protein vaccine consisting of both F1 and F2 domains that could induce synergistic activity should be optimal for induction of antibody responses that interfere with merozoite invasion of erythrocytes
Antioxidant and cytotoxic activities of sulfated polysaccharides from five different edible seaweeds
In recent times, there has been a growing interest in the exploration of antioxidants and global trend toward the usage of seaweeds in the food industries. The low molecular weight up to 14 kDa sulfated polysaccharides of seaweeds (Portieria hornemannii, Spyridia hypnoides, Asparagopsis taxiformis, Centroceras clavulatum and Padina pavonica) were evaluated for in vitro antioxidant activities and cytotoxic assay using HeLa cell line and also characterized by FTIR. The high yield (7.74% alga dry wt.) of sulfated polysaccharide was observed in P. hornemannii followed by S. hypnoides (0.69%), C. clavulaum
(0.55%) and A. taxiformis (0.17%). In the brown seaweed P. pavonica, the sulfated polysaccharide yield was 2.07%. High amount of sulfate was recorded in the polysaccharide of A. taxiformis followed by C. clavulaum, P. pavonica, S. hypnoides and P. hornemannii as indicative for bioactivity. The FTIR spectroscopic analysis supports the sulfated polysaccharides of S. hypnoides, C. clavulatum and A. taxiformis are similar to agar polymer whereas the spectral characteristics of P. hornemannii have similarities to carrageenan. The higher DPPH activity and reducing power were recorded in the polysaccharide of brown seaweed P. pavonica than the red seaweeds as follows: DPPH activities: S. hypnoides > A. taxiformis > C. clavulatum
> P. hornimanii; Reducing power: A. taxiformis > P. hornimanii > S. hypnoides > C. clavulatum. The polysaccharide fractions contain up to 14 kDa from red seaweeds P. hornemannii and S. hypnoides followed by brown seaweed P. pavonica exhibit cytotoxic activity in HeLa cancer cell line (and are similar to structural properties of carrageenan extracted from P. hornemannii). The low molecular weight agar like polymer of S. hypnoides and alginate like brown seaweed P. pavonica showing better in vitro antioxidant activities that are capable of exhibiting cytotoxicity against HeLa cell line can be taken up further in-depth investigation for nutraceutical study.University of Algarve: DL 57/2016info:eu-repo/semantics/publishedVersio
Naturally Occurring Triggers that Induce Apoptosis-Like Programmed Cell Death in Plasmodium berghei Ookinetes
Several protozoan parasites have been shown to undergo a form of programmed cell death that exhibits morphological features associated with metazoan apoptosis. These include the rodent malaria parasite, Plasmodium berghei. Malaria zygotes develop in the mosquito midgut lumen, forming motile ookinetes. Up to 50% of these exhibit phenotypic markers of apoptosis; as do those grown in culture. We hypothesised that naturally occurring signals induce many ookinetes to undergo apoptosis before midgut traversal. To determine whether nitric oxide and reactive oxygen species act as such triggers, ookinetes were cultured with donors of these molecules. Exposure to the nitric oxide donor SNP induced a significant increase in ookinetes with condensed nuclear chromatin, activated caspase-like molecules and translocation of phosphatidylserine that was dose and time related. Results from an assay that detects the potential-dependent accumulation of aggregates of JC-1 in mitochondria suggested that nitric oxide does not operate via loss of mitochondrial membrane potential. L-DOPA (reactive oxygen species donor) also caused apoptosis in a dose and time dependent manner. Removal of white blood cells significantly decreased ookinetes exhibiting a marker of apoptosis in vitro. Inhibition of the activity of nitric oxide synthase in the mosquito midgut epithelium using L-NAME significantly decreased the proportion of apoptotic ookinetes and increased the number of oocysts that developed. Introduction of a nitric oxide donor into the blood meal had no effect on mosquito longevity but did reduce prevalence and intensity of infection. Thus, nitric oxide and reactive oxygen species are triggers of apoptosis in Plasmodium ookinetes. They occur naturally in the mosquito midgut lumen, sourced from infected blood and mosquito tissue. Up regulation of mosquito nitric oxide synthase activity has potential as a transmission blocking strategy
Why Functional Pre-Erythrocytic and Bloodstage Malaria Vaccines Fail: A Meta-Analysis of Fully Protective Immunizations and Novel Immunological Model
Background: Clinically protective malaria vaccines consistently fail to protect adults and children in endemic settings, and at best only partially protect infants. Methodology/Principal Findings: We identify and evaluate 1916 immunization studies between 1965-February 2010, and exclude partially or nonprotective results to find 177 completely protective immunization experiments. Detailed reexamination reveals an unexpectedly mundane basis for selective vaccine failure: live malaria parasites in the skin inhibit vaccine function. We next show published molecular and cellular data support a testable, novel model where parasite-host interactions in the skin induce malaria-specific regulatory T cells, and subvert early antigen-specific immunity to parasite-specific immunotolerance. This ensures infection and tolerance to reinfection. Exposure to Plasmodium-infected mosquito bites therefore systematically triggers immunosuppression of endemic vaccine-elicited responses. The extensive vaccine trial data solidly substantiate this model experimentally. Conclusions/Significance: We conclude skinstage-initiated immunosuppression, unassociated with bloodstage parasites, systematically blocks vaccine function in the field. Our model exposes novel molecular and procedural strategies to significantly and quickly increase protective efficacy in both pipeline and currently ineffective malaria vaccines, and forces fundamental reassessment of central precepts determining vaccine development. This has major implications fo
Impact of species and antibiotic therapy of enterococcal peritonitis on 30-day mortality in critical care - An analysis of the OUTCOMEREA database
Introduction: Enterococcus species are associated with an increased morbidity in intraabdominal infections (IAI). However, their impact on mortality remains uncertain. Moreover, the influence on outcome of the appropriate or inappropriate status of initial antimicrobial therapy (IAT) is subjected to debate, except in septic shock. The aim of our study was to evaluate whether an IAT that did not cover Enterococcus spp. was associated with 30-day mortality in ICU patients presenting with IAI growing with Enterococcus spp. Material and methods: Retrospective analysis of French database OutcomeRea from 1997 to 2016. We included all patients with IAI with a peritoneal sample growing with Enterococcus. Primary endpoint was 30-day mortality. Results: Of the 1017 patients with IAI, 76 (8%) patients were included. Thirty-day mortality in patients with inadequate IAT against Enterococcus was higher (7/18 (39%) vs 10/58 (17%), p = 0.05); however, the incidence of postoperative complications was similar. Presence of Enterococcus spp. other than E. faecalis alone was associated with a significantly higher mortality, even greater when IAT was inadequate. Main risk factors for having an Enterococcus other than E. faecalis alone were as follows: SAPS score on day 0, ICU-acquired IAI, and antimicrobial therapy within 3 months prior to IAI especially with third-generation cephalosporins. Univariate analysis found a higher hazard ratio of death with an Enterococcus other than E. faecalis alone that had an inadequate IAT (HR = 4.4 [1.3-15.3], p = 0.019) versus an adequate IAT (HR = 3.1 [1.0-10.0], p = 0.053). However, after adjusting for confounders (i.e., SAPS II and septic shock at IAI diagnosis, ICU-acquired peritonitis, and adequacy of IAT for other germs), the impact of the adequacy of IAT was no longer significant in multivariate analysis. Septic shock at diagnosis and ICU-acquired IAI were prognostic factors. Conclusion: An IAT which does not cover Enterococcus is associated with an increased 30-day mortality in ICU patients presenting with an IAI growing with Enterococcus, especially when it is not an E. faecalis alone. It seems reasonable to use an IAT active against Enterococcus in severe postoperative ICU-acquired IAI, especially when a third-generation cephalosporin has been used within 3 months. © 2019 The Author(s)
Valorisation of Biowastes for the Production of Green Materials Using Chemical Methods
With crude oil reserves dwindling, the hunt for a sustainable alternative feedstock for fuels and materials for our society continues to expand. The biorefinery concept has enjoyed both a surge in popularity and also vocal opposition to the idea of diverting food-grade land and crops for this purpose. The idea of using the inevitable wastes arising from biomass processing, particularly farming and food production, is, therefore, gaining more attention as the feedstock for the biorefinery. For the three main components of biomass—carbohydrates, lipids, and proteins—there are long-established processes for using some of these by-products. However, the recent advances in chemical technologies are expanding both the feedstocks available for processing and the products that be obtained. Herein, this review presents some of the more recent developments in processing these molecules for green materials, as well as case studies that bring these technologies and materials together into final products for applied usage
Energy and delay efficient state dependent routing algorithm in wireless sensor networks
International audienceRecent advances in wireless sensor networks have led to many new routing protocols specifically designed for sensor networks. Almost, all these routing protocols considered energy efficiency as the objective in order to maximize the whole network lifetime. However, the introduction of video and imaging sensors has introduced additional challenges. Transmission of these flows requires both energy and QoS aware routing in order to ensure efficient usage of sensors and effective access to gathered measurements. In this paper, we propose a new approach called "energy and delay efficient routing protocol for sensor networks (EDEAR)" based on inductive state-dependent swarm agent. This latter is responsible for collecting information of the state of the network in terms of energy and delay by using continuous learning parameters of the network. The discovery of network has been optimized by proposing a new algorithm based on multipoint relay for energy consumption, thus reducing the overhead generated by the packets exploration. Simulation results have demonstrated the effectiveness of our approach for different metrics compared to traditional approaches
- …