<p>Abstract</p> <p>Background</p> <p>MB2 protein is a sporozoite surface antigen on the human malaria parasite <it>Plasmodium falciparum</it>. MB2 was identified by screening a <it>P. falciparum </it>sporozoite cDNA expression library using immune sera from a protected donor immunized via the bites of <it>P. falciparum</it>-infected irradiated mosquitoes. It is not known whether natural exposure to <it>P. falciparum </it>also induces the anti-MB2 response and if this response differs from that in protected individuals immunized via the bites of <it>P. falciparum </it>infected irradiated mosquitoes. The anti-MB2 antibody response may be part of a robust protective response against the sporozoite.</p> <p>Methods</p> <p>Fragments of polypeptide regions of MB2 were constructed as recombinant fusions sandwiched between glutathione S-transferase and a hexa histidine tag for bacterial expression. The hexa histidine tag affinity purified proteins were used to immunize rabbits and the polyclonal sera evaluated in an <it>in vitro </it>inhibition of sporozoite invasion assay. The proteins were also used in immunoblots with sera from a limited number of donors immunized via the bites of <it>P. falciparum </it>infected irradiated mosquitoes and plasma and serum obtained from naturally exposed individuals in Kenya.</p> <p>Results</p> <p>Rabbit polyclonal antibodies targeting the non-repeat region of the basic domain of MB2 inhibited sporozoites entry into HepG2-A16 cells <it>in vitro</it>. Analysis of serum from five human volunteers that were immunized via the bites of <it>P. falciparum </it>infected irradiated mosquitoes that developed immunity and were completely protected against subsequent challenge with non-irradiated parasite also had detectable levels of antibody against MB2 basic domain. In contrast, in three volunteers not protected, anti-MB2 antibodies were below the level of detection. Sera from protected volunteers preferentially recognized a non-repeat region of the basic domain of MB2, whereas plasma from naturally-infected individuals also had antibodies that recognize regions of MB2 that contain a repeat motif in immunoblots. Sequence analysis of eleven field isolates and four laboratory strains showed that these antigenic regions of the basic domain of the <it>MB2 </it>gene are highly conserved in parasites obtained from different parts of the world. Moreover, anti-MB2 antibodies also were detected in the plasma of 83% of the individuals living in a malaria endemic area of Kenya (n = 41).</p> <p>Conclusion</p> <p>A preliminary analysis of the human humoral response against MB2 indicates that it may be an additional highly conserved target for immune intervention at the pre-erythrocytic stage of <it>P. falciparum </it>life cycle.</p