30 research outputs found

    A Synoptical Classification of the Bivalvia (Mollusca)

    Get PDF
    The following classification summarizes the suprageneric taxono-my of the Bivalvia for the upcoming revision of the Bivalvia volumes of the Treatise on Invertebrate Paleontology, Part N. The development of this classification began with Carter (1990a), Campbell, Hoeks-tra, and Carter (1995, 1998), Campbell (2000, 2003), and Carter, Campbell, and Campbell (2000, 2006), who, with assistance from the United States National Science Foundation, conducted large-scale morphological phylogenetic analyses of mostly Paleozoic bivalves, as well as molecular phylogenetic analyses of living bivalves. Dur-ing the past several years, their initial phylogenetic framework has been revised and greatly expanded through collaboration with many students of bivalve biology and paleontology, many of whom are coauthors. During this process, all available sources of phylogenetic information, including molecular, anatomical, shell morphological, shell microstructural, bio- and paleobiogeographic as well as strati-graphic, have been integrated into the classification. The more recent sources of phylogenetic information include, but are not limited to, Carter (1990a), Malchus (1990), J. Schneider (1995, 1998a, 1998b, 2002), T. Waller (1998), Hautmann (1999, 2001a, 2001b), Giribet and Wheeler (2002), Giribet and Distel (2003), Dreyer, Steiner, and Harper (2003), Matsumoto (2003), Harper, Dreyer, and Steiner (2006), Kappner and Bieler (2006), Mikkelsen and others (2006), Neulinger and others (2006), Taylor and Glover (2006), Kříž (2007), B. Morton (2007), Taylor, Williams, and Glover (2007), Taylor and others (2007), Giribet (2008), and Kirkendale (2009). This work has also benefited from the nomenclator of bivalve families by Bouchet and Rocroi (2010) and its accompanying classification by Bieler, Carter, and Coan (2010).This classification strives to indicate the most likely phylogenetic position for each taxon. Uncertainty is indicated by a question mark before the name of the taxon. Many of the higher taxa continue to undergo major taxonomic revision. This is especially true for the superfamilies Sphaerioidea and Veneroidea, and the orders Pectinida and Unionida. Because of this state of flux, some parts of the clas-sification represent a compromise between opposing points of view. Placement of the Trigonioidoidea is especially problematic. This Mesozoic superfamily has traditionally been placed in the order Unionida, as a possible derivative of the superfamily Unionoidea (see Cox, 1952; Sha, 1992, 1993; Gu, 1998; Guo, 1998; Bieler, Carter, & Coan, 2010). However, Chen Jin-hua (2009) summarized evi-dence that Trigonioidoidea was derived instead from the superfamily Trigonioidea. Arguments for these alternatives appear equally strong, so we presently list the Trigonioidoidea, with question, under both the Trigoniida and Unionida, with the contents of the superfamily indicated under the Trigoniida.Fil: Carter, Joseph G.. University of North Carolina; Estados UnidosFil: Altaba, Cristian R.. Universidad de las Islas Baleares; EspañaFil: Anderson, Laurie C.. South Dakota School of Mines and Technology; Estados UnidosFil: Araujo, Rafael. Consejo Superior de Investigaciones Cientificas. Museo Nacional de Ciencias Naturales; EspañaFil: Biakov, Alexander S.. Russian Academy of Sciences; RusiaFil: Bogan, Arthur E.. North Carolina State Museum of Natural Sciences; Estados UnidosFil: Campbell, David. Paleontological Research Institution; Estados UnidosFil: Campbell, Matthew. Charleston Southern University; Estados UnidosFil: Chen, Jin Hua. Chinese Academy of Sciences. Nanjing Institute of Geology and Palaeontology; República de ChinaFil: Cope, John C. W.. National Museum of Wales. Department of Geology; Reino UnidoFil: Delvene, Graciela. Instituto Geológico y Minero de España; EspañaFil: Dijkstra, Henk H.. Netherlands Centre for Biodiversity; Países BajosFil: Fang, Zong Jie. Chinese Academy of Sciences; República de ChinaFil: Gardner, Ronald N.. No especifica;Fil: Gavrilova, Vera A.. Russian Geological Research Institute; RusiaFil: Goncharova, Irina A.. Russian Academy of Sciences; RusiaFil: Harries, Peter J.. University of South Florida; Estados UnidosFil: Hartman, Joseph H.. University of North Dakota; Estados UnidosFil: Hautmann, Michael. Paläontologisches Institut und Museum; SuizaFil: Hoeh, Walter R.. Kent State University; Estados UnidosFil: Hylleberg, Jorgen. Institute of Biology; DinamarcaFil: Jiang, Bao Yu. Nanjing University; República de ChinaFil: Johnston, Paul. Mount Royal University; CanadáFil: Kirkendale, Lisa. University Of Wollongong; AustraliaFil: Kleemann, Karl. Universidad de Viena; AustriaFil: Koppka, Jens. Office de la Culture. Section d’Archéologie et Paléontologie; SuizaFil: Kříž, Jiří. Czech Geological Survey. Department of Sedimentary Formations. Lower Palaeozoic Section; República ChecaFil: Machado, Deusana. Universidade Federal do Rio de Janeiro; BrasilFil: Malchus, Nikolaus. Institut Català de Paleontologia; EspañaFil: Márquez Aliaga, Ana. Universidad de Valencia; EspañaFil: Masse, Jean Pierre. Universite de Provence; FranciaFil: McRoberts, Christopher A.. State University of New York at Cortland. Department of Geology; Estados UnidosFil: Middelfart, Peter U.. Australian Museum; AustraliaFil: Mitchell, Simon. The University of the West Indies at Mona; JamaicaFil: Nevesskaja, Lidiya A.. Russian Academy of Sciences; RusiaFil: Özer, Sacit. Dokuz Eylül University; TurquíaFil: Pojeta, John Jr.. National Museum of Natural History; Estados UnidosFil: Polubotko, Inga V.. Russian Geological Research Institute; RusiaFil: Pons, Jose Maria. Universitat Autònoma de Barcelona; EspañaFil: Popov, Sergey. Russian Academy of Sciences; RusiaFil: Sanchez, Teresa Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Sartori, André F.. Field Museum of National History; Estados UnidosFil: Scott, Robert W.. Precision Stratigraphy Associates; Estados UnidosFil: Sey, Irina I.. Russian Geological Research Institute; RusiaFil: Signorelli, Javier Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; ArgentinaFil: Silantiev, Vladimir V.. Kazan Federal University; RusiaFil: Skelton, Peter W.. Open University. Department of Earth and Environmental Sciences; Reino UnidoFil: Steuber, Thomas. The Petroleum Institute; Emiratos Arabes UnidosFil: Waterhouse, J. Bruce. No especifica;Fil: Wingard, G. Lynn. United States Geological Survey; Estados UnidosFil: Yancey, Thomas. Texas A&M University; Estados Unido

    Development of Cysteine-Free Fluorescent Proteins for the Oxidative Environment

    Get PDF
    Molecular imaging employing fluorescent proteins has been widely used to highlight specific reactions or processes in various fields of the life sciences. Despite extensive improvements of the fluorescent tag, this technology is still limited in the study of molecular events in the extracellular milieu. This is partly due to the presence of cysteine in the fluorescent proteins. These proteins almost cotranslationally form disulfide bonded oligomers when expressed in the endoplasmic reticulum (ER). Although single molecule photobleaching analysis showed that these oligomers were not fluorescent, the fluorescent monomer form often showed aberrant behavior in folding and motion, particularly when fused to cysteine-containing cargo. Therefore we investigated whether it was possible to eliminate the cysteine without losing the brightness. By site-saturated mutagenesis, we found that the cysteine residues in fluorescent proteins could be replaced with specific alternatives while still retaining their brightness. cf(cysteine-free)SGFP2 showed significantly reduced restriction of free diffusion in the ER and marked improvement of maturation when fused to the prion protein. We further applied this approach to TagRFP family proteins and found a set of mutations that obtains the same level of brightness as the cysteine-containing proteins. The approach used in this study to generate new cysteine-free fluorescent tags should expand the application of molecular imaging to the extracellular milieu and facilitate its usage in medicine and biotechnology

    Investigating the Bivalve Tree of Life – an exemplar-based approach combining molecular and novel morphological characters

    Full text link

    Shell tubules in Condylocardiinae (Bivalvia: Carditoidea)

    No full text

    Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution

    No full text
    Larval and earliest postlarval shells of Jurassic Bakevelliidae are described for the first time and some complementary data are given concerning larval shells of oysters and pinnids. Two new larval shell characters, a posterodorsal outlet and shell septum are described. The outlet is homologous to the posterodorsal notch of oysters and posterodorsal ridge of arcoids. It probably reflects the presence of the soft anatomical character post−anal tuft, which, among Pteriomorphia, was only known from oysters. A shell septum was so far only known from Cassianellidae, Lithiotidae, and the bakevelliid Kobayashites. A review of early ontogenetic shell characters strongly suggests a basal dichotomy within the Pteriomorphia separating taxa with opisthogyrate larval shells, such as most (or all?) Praecardioida, Pinnoida, Pterioida (Bakevelliidae, Cassianellidae, all living Pterioidea), and Ostreoida from all other groups. The Pinnidae appear to be closely related to the Pterioida, and the Bakevelliidae belong to the stem line of the Cassianellidae, Lithiotidae, Pterioidea, and Ostreoidea. The latter two superfamilies comprise a well constrained clade. These interpretations are consistent with recent phylogenetic hypotheses based on palaeontological and genetic (18S and 28S mtDNA) data. A more detailed phylogeny is hampered by the fact that many larval shell characters are rather ancient plesiomorphies

    Cretaceous oysters from North Africa : origin and distribution

    No full text
    Les faunes très diversifiées d'huîtres du Crétacé d'Afrique du Nord sont discutées. Des faunes très semblables étaient distribuées du Pérou jusqu'en Asie centrale. L'association faunique, connue comme "in facies africana" débute à l'Albien supérieur (Vraconien). Trois étapes peuvent être distinguées dans le développement de ces faunes : une première étape eut lieu de l'Albien supérieur au Cénomanien supérieur, une seconde du Coniacien au Santonien, et la troisième du Campanien au Masstrichtien terminal. Les deux premières ont été très probablement caractérisées par une migration de faunes de l'ouest vers l'est. Pour l'intervalle Campanien-Maastrichtien la situation était plus complexe : elle a combiné une migration est-ouest, avec une influence de la marge nord de la Téthys et/ou du domaine tempéré. (Résumé d'auteur
    corecore