73 research outputs found

    Study of the diversity of culturable actinomycetes in the North Pacific and Caribbean coasts of Costa Rica

    Get PDF
    In this study, 137 actinomycetes were isolated from subtidal marine sediments in the North Pacific and Caribbean coasts of Costa Rica. Bioinformatics analysis of the 16S rRNA gene sequences assigned the isolates to 15 families and 21 genera. Streptomyces was the dominant genus while the remaining 20 genera were poorly represented. Nearly 70% of the phylotypes presented a coastal-restricted distribution whereas the other 30% were common inhabitants of both shores. The coastal tropical waters of Costa Rica showed a high diversity of actinomycetes, both in terms of the number of species and phylogenetic composition, although significant differences were observed between and within shores. The observed pattern of species distribution might be the result of several factors including the characteristics of the ecosystems, presence of endemic species and the influence of terrestrial runoff.University of Aberdeen/[]//EscociaNational Institutes of Health/[U01 TW007404-01 ICBG]/NIH/Estados UnidosUCR::VicerrectorĂ­a de Docencia::Ciencias BĂĄsicas::Facultad de Ciencias::Escuela de BiologĂ­aUCR::VicerrectorĂ­a de Docencia::Ciencias BĂĄsicas::Facultad de Ciencias::Escuela de QuĂ­mic

    A ketoreductase domain in the PksJ protein of the bacillaene assembly line carries out both α- and ÎČ-ketone reduction during chain growth

    No full text
    The polyketide signaling metabolites bacillaene and dihydrobacillaene are biosynthesized in Bacillus subtilis on an enzymatic assembly line with both nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) modules acting along with catalytic domains servicing the assembly line in trans. These signaling metabolites possess the unusual starter unit α-hydroxyisocaproate (α-HIC). We show here that it arises from initial activation of α-ketoisocaproate (α-KIC) by the first adenylation domain of PksJ (a hybrid PKS/NRPS) and installation on the pantetheinyl arm of the adjacent thiolation (T) domain. The α-KIC unit is elongated to α-KIC-Gly by the second NRPS module in PksJ as demonstrated by mass spectrometric analysis. The third module of PksJ uses PKS logic and contains an embedded ketoreductase (KR) domain along with two adjacent T domains. We show that this KR domain reduces canonical 3-ketobutyryl chains but also the α-keto group of α-KIC-containing intermediates on the PksJ T-domain doublet. This KR activity accounts for the α-HIC moiety found in the dihydrobacillaene/bacillaene pair and represents an example of an assembly-line dual-function α- and ÎČ-KR acting on disparate positions of a growing chain intermediate

    Single-drop fragmentation determines size distribution of raindrops

    No full text
    International audienceLike many natural objects, raindrops are distributed in size. By extension of what is known to occur inside the clouds, where small droplets grow by accretion of vapour and coalescence, raindrops in the falling rain at the ground level are believed to result from a complex mutual interaction with their neighbours. We show that the raindrops' polydispersity, generically represented according to Marshall-Palmer's law (1948), is quantitatively understood from the fragmentation products of non-interacting, isolated drops. Both the shape of the drops' size distribution, and its parameters are related from first principles to the dynamics of a single drop deforming as it falls in air, ultimately breaking into a dispersion of smaller fragments containing the whole spectrum of sizes observed in rain. The topological change from a big drop into smaller stable fragments-the raindrops-is accomplished within a timescale much shorter than the typical collision time between the drops
    • 

    corecore