375 research outputs found

    Dark energy survey year 1 results: the relationship between mass and light around cosmic voids

    Get PDF
    What are the mass and galaxy profiles of cosmic voids? In this paper, we use two methods to extract voids in the Dark Energy Survey (DES) Year 1 redMaGiC galaxy sample to address this question. We use either 2D slices in projection, or the 3D distribution of galaxies based on photometric redshifts to identify voids. For the mass profile, we measure the tangential shear profiles of background galaxies to infer the excess surface mass density. The signal-to-noise ratio for our lensing measurement ranges between 10.7 and 14.0 for the two void samples. We infer their 3D density profiles by fitting models based on N-body simulations and find good agreement for void radii in the range 15–85 Mpc. Comparison with their galaxy profiles then allows us to test the relation between mass and light at the 10 per cent level, the most stringent test to date. We find very similar shapes for the two profiles, consistent with a linear relationship between mass and light both within and outside the void radius. We validate our analysis with the help of simulated mock catalogues and estimate the impact of photometric redshift uncertainties on the measurement. Our methodology can be used for cosmological applications, including tests of gravity with voids. This is especially promising when the lensing profiles are combined with spectroscopic measurements of void dynamics via redshift-space distortions

    Dark Energy Survey Year 1 Results: A Precise H0 Measurement from DES Y1, BAO, and D/H Data

    Full text link
    We combine Dark Energy Survey Year 1 clustering and weak lensing data with baryon acoustic oscillations and Big Bang nucleosynthesis experiments to constrain the Hubble constant. Assuming a flat ΛCDM model with minimal neutrino mass (Σm υ = 0.06 eV), we find H 0 = 67.4 -1.2+1.1 km s -1 Mpc -1 (68 per cent CL). This result is completely independent of Hubble constant measurements based on the distance ladder, cosmic microwave background anisotropies (both temperature and polarization), and strong lensing constraints. There are now five data sets that: (a) have no shared observational systematics; and (b) each constrains the Hubble constant with fractional uncertainty at the few percent level. We compare these five independent estimates, and find that, as a set, the differences between them are significant at the 2.5σ level (χ 2 /dof = 24/11, probability to exceed = 1.1 per cent). Having set the threshold for consistency at 3σ, we combine all five data sets to arrive at H 0 = 69.3 -0.6+0.4 km s -1 Mpc -

    Inference from the small scales of cosmic shear with current and future Dark Energy Survey data

    Get PDF
    Cosmic shear is sensitive to fluctuations in the cosmological matter density field, including on small physical scales, where matter clustering is affected by baryonic physics in galaxies and galaxy clusters, such as star formation, supernovae feedback and AGN feedback. While muddying any cosmological information that is contained in small scale cosmic shear measurements, this does mean that cosmic shear has the potential to constrain baryonic physics and galaxy formation. We perform an analysis of the Dark Energy Survey (DES) Science Verification (SV) cosmic shear measurements, now extended to smaller scales, and using the Mead et al. 2015 halo model to account for baryonic feedback. While the SV data has limited statistical power, we demonstrate using a simulated likelihood analysis that the final DES data will have the statistical power to differentiate among baryonic feedback scenarios. We also explore some of the difficulties in interpreting the small scales in cosmic shear measurements, presenting estimates of the size of several other systematic effects that make inference from small scales difficult, including uncertainty in the modelling of intrinsic alignment on nonlinear scales, `lensing bias', and shape measurement selection effects. For the latter two, we make use of novel image simulations. While future cosmic shear datasets have the statistical power to constrain baryonic feedback scenarios, there are several systematic effects that require improved treatments, in order to make robust conclusions about baryonic feedback
    corecore