258 research outputs found

    Validation of key behaviourally based mental health diagnoses in administrative data: suicide attempt, alcohol abuse, illicit drug abuse and tobacco use

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Observational research frequently uses administrative codes for mental health or substance use diagnoses and for important behaviours such as suicide attempts. We sought to validate codes (<it>International Classification of Diseases, 9<sup>th </sup>edition, clinical modification </it>diagnostic and E-codes) entered in Veterans Health Administration administrative data for patients with depression versus a gold standard of electronic medical record text ("chart notation").</p> <p>Methods</p> <p>Three random samples of patients were selected, each stratified by geographic region, gender, and year of cohort entry, from a VHA depression treatment cohort from April 1, 1999 to September 30, 2004. The first sample was selected from patients who died by suicide, the second from patients who remained alive on the date of death of suicide cases, and the third from patients with a new start of a commonly used antidepressant medication. Four variables were assessed using administrative codes in the year prior to the index date: suicide attempt, alcohol abuse/dependence, drug abuse/dependence and tobacco use.</p> <p>Results</p> <p>Specificity was high (≥ 90%) for all four administrative codes, regardless of the sample. Sensitivity was ≤75% and was particularly low for suicide attempt (≤ 17%). Positive predictive values for alcohol dependence/abuse and tobacco use were high, but barely better than flipping a coin for illicit drug abuse/dependence. Sensitivity differed across the three samples, but was highest in the suicide death sample.</p> <p>Conclusions</p> <p>Administrative data-based diagnoses among VHA records have high specificity, but low sensitivity. The accuracy level varies by different diagnosis and by different patient subgroup.</p

    Coupled Growth and Division of Model Protocell Membranes

    Get PDF
    The generation of synthetic forms of cellular life requires solutions to the problem of how biological processes such as cyclic growth and division could emerge from purely physical and chemical systems. Small unilamellar fatty acid vesicles grow when fed with fatty acid micelles and can be forced to divide by extrusion, but this artificial division process results in significant loss of protocell contents during each division cycle. Here we describe a simple and efficient pathway for model protocell membrane growth and division. The growth of large multilamellar fatty acid vesicles fed with fatty acid micelles, in a solution where solute permeation across the membranes is slow, results in the transformation of initially spherical vesicles into long thread-like vesicles, a process driven by the transient imbalance between surface area and volume growth. Modest shear forces are then sufficient to cause the thread-like vesicles to divide into multiple daughter vesicles without loss of internal contents. In an environment of gentle shear, protocell growth and division are thus coupled processes. We show that model protocells can proceed through multiple cycles of reproduction. Encapsulated RNA molecules, representing a primitive genome, are distributed to the daughter vesicles. Our observations bring us closer to the laboratory synthesis of a complete protocell consisting of a self-replicating genome and a self-replicating membrane compartment. In addition, the robustness and simplicity of this pathway suggests that similar processes might have occurred under the prebiotic conditions of the early Earth.Exobiology Program (U.S.) (Grant EXB02- 0031-0018)United States. National Aeronautics and Space Administration (Exobiology Program) (Grant EXB02-0031-0018)Howard Hughes Medical Institute (Investigator

    Do Market-Level Hospital and Physician Resources Affect Small Area Variation in Hospital Use?

    Full text link
    This study evaluates the effect of market-level physician and hospital resources on hospital use. It is anticipated that higher hospital discharges are associated with (1) greater hospital and physician resources, (2) more differentiated hospital and physician resources, and (3) higher levels of teaching intensity in the community. Data on 14 modified diagnostically related groups (DRGs) and 58 hospital market communities in Michigan are analyzed during a 7-year period. Findings indicate that physician resources, hospital resources, differentiation of hospital and physician resources, and teaching intensity contribute only modestly to discharges, holding constant the socioeconomic attributes of the community and adjusting for the variation in hospital use over time. With the inclusion of hospital and physician resource variables, socioeconomic factors remain important determinants of the variation across market communities. Findings are discussed in terms of their implications for health care organizations, managed care programs, and cost control efforts in general.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68450/2/6.pd

    Synthetic Nanoparticles for Vaccines and Immunotherapy

    Get PDF
    The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004

    Role of Sphingomyelin Synthase in Controlling the Antimicrobial Activity of Neutrophils against Cryptococcus neoformans

    Get PDF
    The key host cellular pathway(s) necessary to control the infection caused by inhalation of the environmental fungal pathogen Cryptococcus neoformans are still largely unknown. Here we have identified that the sphingolipid pathway in neutrophils is required for them to exert their killing activity on the fungus. In particular, using both pharmacological and genetic approaches, we show that inhibition of sphingomyelin synthase (SMS) activity profoundly impairs the killing ability of neutrophils by preventing the extracellular release of an antifungal factor(s). We next found that inhibition of protein kinase D (PKD), which controls vesicular sorting and secretion and is regulated by diacylglycerol (DAG) produced by SMS, totally blocks the extracellular killing activity of neutrophils against C. neoformans. The expression of SMS genes, SMS activity and the levels of the lipids regulated by SMS (namely sphingomyelin (SM) and DAG) are up-regulated during neutrophil differentiation. Finally, tissue imaging of lungs infected with C. neoformans using matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS), revealed that specific SM species are associated with neutrophil infiltration at the site of the infection. This study establishes a key role for SMS in the regulation of the killing activity of neutrophils against C. neoformans through a DAG-PKD dependent mechanism, and provides, for the first time, new insights into the protective role of host sphingolipids against a fungal infection
    corecore