3,410 research outputs found

    Competition of rotation and stratification in flux concentrations

    Full text link
    In a strongly stratified turbulent layer, a uniform horizontal magnetic field can become unstable to spontaneously form local flux concentrations due to a negative contribution of turbulence to the large-scale (mean-field) magnetic pressure. This mechanism, called the negative effective magnetic pressure instability (NEMPI), is of interest in connection with dynamo scenarios where most of the magnetic field resides in the bulk of the convection zone, and not at the bottom. Recent work using the mean-field hydromagnetic equations has shown that NEMPI becomes suppressed at rather low rotation rates with Coriolis numbers as low as 0.1.}{Here we extend these earlier investigations by studying the effects of rotation both on the development of NEMPI and on the effective magnetic pressure. We also quantify the kinetic helicity from direct numerical simulations (DNS) and compare with earlier work.}{To calculate the rotational effect on the effective magnetic pressure we consider both DNS and analytical studies using the τ\tau approach. To study the effects of rotation on the development of NEMPI we use both DNS and mean-field calculations of the 3D hydromagnetic equations in a Cartesian domain.}{We find that the growth rates of NEMPI from earlier mean-field calculations are well reproduced with DNS, provided the Coriolis number is below about 0.06. In that case, kinetic and magnetic helicities are found to be weak. For faster rotation, dynamo action becomes possible. However, there is an intermediate range of rotation rates where dynamo action on its own is not yet possible, but the rotational suppression of NEMPI is being alleviated.}{Production of magnetic flux concentrations through the suppression of turbulent pressure appears to be possible only in the upper-most layers of the Sun, where the convective turnover time is less than 2 hours.}Comment: 13 pages, 13 figures submitted to A&

    Neutrinos in the simplest little Higgs scenario and TeV leptogenesis

    Full text link
    The little Higgs scenario may provide an interesting framework to accommodate TeV scale leptogenesis because a TeV Majorana mass of the right-handed neutrino that we employ for the latter may find a natural place near the ultraviolet cutoff of the former. In this work we study how a light neutrino spectrum, generated radiatively, and TeV scale leptogenesis can be embedded in the simplest little Higgs framework. Alternatively, we highlight how the neutrino Yukawa textures of the latter are constrained.Comment: 10 pages, latex, v2: refs and comments added, to appear in PR

    Rational characteristic functions and markov chains

    Get PDF
    Abstract 1 We investigate in this paper how to estimate the density function of a random variable using a parametric ARMA model for its characteristic function. The choice of this model is motivated by the fact that this type of density characterizes the duration of staying at an N-states Markov chain, but the approach is general enough to be applied to many practical problems. Both ML and moment-based linear estimates are derived, the former being based on the optimization of a highly non-linear function. 1.Peer ReviewedPostprint (published version

    Non-periodic driving of coupled oscillators:a spherical swing

    Get PDF
    Nonlinearly coupled, damped oscillators at 1:1 frequency ratio, one oscillator being driven coherently for efficient excitation, are exemplified by a spherical swing with some phase-mismatch between drive and response. For certain damping range, excitation is found to succeed if it lags behind, but to produce a chaotic attractor if it leads the response. Although a period-doubhng sequence, for damping increasing, leads to the attractor, this is actually born as a hard (as regards amplitude) bifurcation at a zero growth-rate parametric line; as damping decreases, an unstable fixed point crosses an invariant plane to enter as saddle-focus a phase-space domain of physical solutions. A second hard bifurcation occurs at the zero mismatch line, the saddle-focus leaving that domain. Times on the attractor diverge when approaching either fine, leading to exactly one-dimensional and noninvertible limit maps, which are analytically determined

    A POF model for short fiber segments in avionics applications

    Get PDF
    Plastic Optical Fibres (POF) have now been a well-established media for transporting high-speed at low cost in short distance communications systems, and avionics is the latest segment where these fibers are becoming an important factor. In fact, the POF''s flexibility and ease of installation make this fiber a great option for the replacement by fiber of some of the existing aircraft data links. We propose a new model for short fiber links that are suitable for plane''s systems that involve a lot of connectors; the model is built around two important properties, namely, power transfer among modes and attenuation. The model expands on our previous work on the subject and is based on detailed experimental measurements for various fiber types and lengths
    corecore