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Abstract1

We investigate in this paper how to estimate the density function of
a random variable using a parametric ARMA model for its
characteristic function. The choice of this model is motivated by the
fact that this type of density characterizes the duration of staying at
an N-states Markov chain, but the approach is general enough to be
applied to many practical problems. Both ML and moment-based
linear estimates are derived, the former being based on the
optimization of a highly non-linear function.

1. Introduction

Many statistical problems can be solved by modeling the density
function (DF) of a random variable (RV). Among them we can
quote classification, detection, estimation or simulation. Practical
applications range from radar clutter classification or remote
sensing to multipath channels characterization [5] and, in general,
those problems in which the Central Limit Theorem does not apply.
In many cases, the underlying distribution is theoretically known
and a physically significant model can be applied. In other cases,
the mechanics for the variable generation are unknown and then a
model has to be imposed following some paradigm or heuristic
points of view. On the later case it is usual to apply the maximum
entropy paradigm when some of the moments are available. The
resulting distribution turns out to be a product of Gaussian and sub-
Gaussian distributions [6], which does not always fit the histogram
of the data, because of decaying rates of the tails or assymetry of the
DF. Other approaches tend to fit a series of orthogonal functions to
the DF of the data. The approach followed here is to assume that our
distribution is a sum of exponentially density distributed random
variables, and hence its characteristic function (CF) turns out to be
rational. As a result, the parameters of the CF are linearly related to
the moments of the RV. Lacking of space, we will only deal with
discrete-lattice type RV, although the principles can be extended to
continuous-valued RVs.

2. Parametric Density Function estimation

We assume that the CF of the lattice-type observed random variable
{xt} follows a rational form as in equation (1).
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The poles of the denominator must be real in order to get a positive
DF. The unit integral property of the DF is satisfied thanks to the
term A(0) and the condition of unity in the sum of the bi. Note that
{xt} is assumed to be the sum of N exponentially distributed random
variable, each having a DF:

f nj j j
n( ) ( )= −1 α α      (2)

and an (M+1)-valued RV. In this sense, this work is a generalization
of the equally valued all-poles approximation to a DF found in [4],
chapter 11. The rational behind this model will become apparent in
section 4, but for the moment, note that it is general enough to
accomodate many DF types.

The CF can be expressed as:

A A B( ) ( ) ( ) ( )ω ω ωΦ = 0    (3)

By continuously deriving this expression with respect to ω, we
obtain the correspondent coefficients of its Taylor series, and hence
the moments mk of {xt} as functions of the parameters b and a.
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Note that each moment can be expressed as a sum of terms
depending only on the MA part of the CF and terms depending on
the AR part. From equation (4) it is possible to write down a linear
matrix equation relating moments and coefficients of the CF:
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where m is a vector containing the first M+N moments, 
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contain the first M columns of an (M+N)×(M+N) Vandermonde
matrix, T is an N-size lower triangular matrix containing moments
and R is a matrix with no other particularity of having the moments
of the RV on it. In particular, for the M=N=2 case, the set of
equations is as follows:
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The unicity of the solution can be shown in the following way. If the
rank of the matrix is not complete, then two different sets of
parameters v, b could yield the same set of moments. This is not
possible because the rational function in (1) is analytic and because
of the unicity of the Fourier transform.

It is worth mentioning that in general, not every RV can be model in
this way. Only those moments yielding a denominator for the CF of
only real valued poles can render a positive-definite DF, and hence,
a DF. On the other hand, it may seem that this framework is only
capable to estimate one sided DFs. General enough, this framework
is capable to parametrize two sided exponentials DFs and thus to
adapt to the nature of the problem. In fact, stable (0 < αj < 1) poles
are the contribution to the right hand side of the DF while unstable
poles render the left hand side of the DF. As a final consideration,
the approach can be easily developed for continuous valued RV, by
taking the Laplace transform in lieu of Z-transform (see [9] for the
particular case of AR characteristic functions).

The approach presented above stresses the linear relation between
the moments of the RV and the coefficients of the AR and MA
polynomials. Note that the poles of the underlying DF have to be
real and positive, in order to get a positive DF, and the moment-
based estimation is not free of the “hard failure” of finding negative
or even complex poles. A similar consideration can be done on the
coefficients b: they have to be bounded between 0 and 1, and its
sum must be the unity. The reasons for these failures are the finite-
data length estimation of the moments or maybe because the data
does not fit the model. In those cases, one has to resort to ML
estimation of the poles. Assuming independent observations of the
RV, the ML approach is obtained by maximizing the probability of
the L observations with respect to the parameters as:
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with respect to the coefficients b and the poles α. The symbol ⊗
denotes convolution. The optimization process needs a good first
approach to the solution that can be obtained by rooting the the
linear approach estimation. In the simulations shown below, the
Nelder-Mead algorithms has been used to compute the ML
estimates with excelent results.

3. Theoretic performance of linear estimates

Having shown the consistency of the linear approach, it is
interesting to stablish the efficiency of the estimation, that is, its
normalized variance. It has to be into account for instance, if the
intended application is signals classification based on the ARMA
set of parameters. It is also interesting so as to be sure that good
initial values are provided to the non-linear optimization procedure.
The linear system shown in equation (5) can be expressed as:

A(m) w = m         (7)

for which the unknowns are bi and the normalized coefficients vi

arranged in vector w. The estimation procedure consist of
computing the sample moments from the data to construct an
estimate of the vector m, and then solve (7). Note that the system
can be overdetermined and hence, using standard least squares:

~w =[[A(m)]TCA(m)]-1[A(m)]TCm           (8)

where C is a positive definite weighting matrix. The analytical study
of the performance of the estimates thus obtained has been
established in [3]. The normalized asymptotic covariance matrix of
the estimates ~w  depends on the covariances of the estimated
moments in the following way (Theorem 4, [3]):

( )( ){ } ( )P w w w w w G w w G w( ) ~ ~ ( ) ( )= ⋅ − − =
→∞
lim L E

L

T TΣ  (9)

where Σ(w) is the asymptotic covariance matrix of the vector m,
and G(w) is the Jacobian matrix of the parameters with respect to
the moments. Matrix C is given by Theorem 5 in [3] and depends
implicitly of the parameters w. Note however, that the construction
of the weighting matrix C is a function of the (unknown) true
parameters w. Equation (7) becomes nonlinear, and hence,
cumbersome to solve. However, it is worth to consider the case of
same number of moments and parameters. The expression (8) is
then independent of the weighting matrix W, and the solution
remains statistically efficient. In this case the asymptotic covariance
of ~w  given by equation (9) is also greatly simplified. It can be
computed using any symbolic mathematical package. Results are
not written here because, even for the M=1, N=2 case the
corresponding vector of normalized asymptotic covariances of the
estimated ~w  contain a sum of more than 60 terms. However, in
order to clarify the behaviour of the estimates, figures 1 and 2
display the variances of the parameters b1 and a1 for different values
of b1 (= 0.2, 0.5 and 0.8) versus values of the poles (assumed to be
equal, that is α1=α2) between 0 and 1. Although it is not shown, the
variance of a2 is quite similar to the a1 one. The trends of the curves
show that the parameters exhibit larger performance as the values of
the poles approaches 1. In other words, the longer the tails of the
DF, the larger the variance of the estimated parameters.

4. States duration model in a Markov chain

Since the early 80’s, Hidden Markov Models are widely used to
represent words in a speech recognition system (see [10] for a
review on the subject). Each state in the Markov chain (see figure
(3)) is characterized by the probabilities of observation of a set of
AR spectra taken from the AR spectra of the speech frames. In this
way, a word is modeled as a temporal sequence of spectra.
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Figures 1&2. Theoretic asymptotic variances of the parameters
b1 and a1 in an ARMA(2,1) model, versus the values of the
poles. Three diferent values for b1 have been used. Both poles
are equal.

The construction of an HMM-based recognition system is done in
two stages. Suppose you want your computer to recognize a set of
words spoken by many different people. First, in the training stage,
you should be given a sufficient number of realizations of those
words uttered by different speakers. Each word is segmented into
pieces or frames, and an AR spectrum is computed in each.
Generally speaking, different type of spectra are associated to
different phonemes, and hence, this is a suitable magnitude to be
associated to each state in the Markov chain. An HM Model is built
for each word to be recognized. Second, in the recognition stage, as
a word is available, it is framed and the sequence of AR spectra that
characterizes the word are computed. Then, the decision is based on
the likelihood of each model to produce the observed word. This
framework has demonstrated great improvement with respect to
other approaches. However, observe that the probability of having n
speech frames associated to a state (or in other words, the duration
in speech frames of a given phoneme) is one-sided exponential,
which, for many actual data, is inappropriate.

Some efforts have been done in the past to allow some flexibility in
the inherent exponential model. Other approaches have been used in
the past to improve the duration modeling [1], based on other
parametric functions, as the Gamma function. Its main drawback is
the complexity of the training as well as the recognition stage,
which becomes unpractical as the number of states increases. In
order to cope with this deficiency Russell and Cooke [2] proposed
to replace each state of the HMM by another Markov chain (sub-
HMM) such that the duration for a given state is the sum of the
duration RVs associated to each sub-HMM (see figure 3). Thus
modeled, the DF of the observed the duration happens to be the
convolution of exponentially distributed RV. We will show next that
if we also consider direct paths from the substates 1 to state 2, the
CF is ARMA and the methods seen in previous sections become
very useful.

Briefly, the use of multiple exponentials as an alternate model
allows, from one point of view, improve the fit between the model
and the data, and from another point of view, to preserve the
Markov chain structure which allows the use of the standard
algorithms to carry on the training and recognition tasks [10].
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Figure 3. Every single state in the standard Markov chain (a)
can be substituted by another Markov chain (b). In this way, the
duration modeling of state 1 is improved. The CF of the
duration random variable in the sub-chain turns out to be
ARMA.

Let us proceed with model (b) in figure 3 for ilustrative purposes,
and then we will generalize to the most general case of N states. The
succesive probabilities of remaining in state 1 during n speech
frames are easily derived by induction as the probabilities of
remaining at each state:
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where the terms Χ1,..., M
k  represent a multiple convolution of

exponential responses with time constants equal to αj, that is:
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Thus, in general, for an N states sub-chain the DF of the duration
RV is given by:
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By Z-transforming this expression, and proceeding by induction, we
obtain the characteristic function, which turns out to be
ARMA(N,N), with a zero at z=0. This zero accounts for the right
displacement of fN(n) (fN(0)=0). By comparing this Z-transform with
equation (1) we can relate the coefficients bi with the transition
probabilities:
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and the term Ψ1,...,N
p

 contains the sum of all possible products of p

terms among the coefficients α1, α2,..., αN, that is:

Ψ1 2 3
2

1 2 1 3 2 3, , = + +α α α α α α

In this way, once the terms b and a are computed from the available
data using the approach of section 3, the recovery of the transition
probabilities αj is possible by rooting the AR polinomial [7], and
then, recovery of βj using (14) is straightforward, since β1 depends
on b1 and, further on, βk depends on bk  and β1,..., βk-1.

Finally, note that if we do not allow direct transitions from sub-
states to the next state (that is βk = 0), then the CF is purely AR, but
then the duration RV cannot take lower values than N .

5. Simulations and practical results

5.1. Estimation on simulated data
Two sets of parameters have been used to generate synthetic
realizations of RV fitting the model in equation (1), corresponding
to ARMA(3,1) and ARMA(3,2) CFs. A set of 10 Monte Carlo
realizations of 250 data each have been run. The results can be
found in Tables 1 and 2 for different models. As expected, the ML
procedure exhibits more accurate means and lower variances,
although it is bothering to compute. Graphic results of the second
case are shown in figure 4, displaying three plots, one for the
moment-based estimation, one for the ML estimation and one for
the theoretical DF.

5.2. DF estimation on real data
In order to verify the goodness of fit on real data, we have collected
two sets of measures (170 and 750 observations each)
corresponding to the duration (in speech frames of 25 ms each) of
the \t\ and \u\ phonemes from the Spanish EUROM.1 database [11].
The utterances have been segmented using the Viterbi algorithm and
classical HMM methods in a Bakis-type Markov chain, without
using the transition probabilities. Then, according to the parameters
estimated from the data, we substitute each state by a sub-chain as
in figure 3. Note that without this substitution, the probability of

staying n time steps in state 1 given by the one-sided exponential
function:

p n N Nj j
N( ) ( )= = − ≥−1 11α α

which is far from being a good approximation to the histogram of
the data (see solid lines in figures 5 and 6). We have tested both the
moment-based and the ML approaches to both data sets, having
chosen an ARMA(3,3) model, corresponding to a Markov chain of
three sub-states. The values of the transitions probabilities obtained
using both the moment-based and ML estimations are shown in
Tables 3 and 4. As it was said above, the moment-based procedure
may render improper transition probabilites. In the first case, it was
found that the poles of A(z) where complex, but with a quite small
imaginary part. The real part was then taken as first approximation
to the ML. The parameters thus obtained fit the data very
conveniently .

Table 1. ARMA(3,1) CF model
True Param. Moment based

Estimates
ML

Estimates

a1 = -0,2463
a2 = 0,0202
a3 = -0,0006

-0,2493 ± 0,0875
0,0161 ± 0,0382
-0,0007 ± 0,0052

-0,2422 ± 0,0471
0,0117 ± 0,0102
0,000 ± 0,0010

b0 = 0,5
b1 = 0,5

0,5431 ± 0,0806
0,4569 ± 0,0806

0,6265 ± 0,0690
0,3735 ± 0,0691

Table 2. ARMA(3,2) CF model
True Param. Moment based

Estimates
ML

Estimates

a1 = -1,0503
a2 = 0,3619
a3 = -0,0410

-0,9232 ± 0,2201
0,2575 ± 0,2202
-0,0217 ± 0,0604

-1,0182 ± 0,0683
0,3362 ± 0,0591
0,0361 ± 0,0123

b0 = 0,1
b1 = 0,4
b2 = 0,5

0,1193 ± 0,3121
 0,2315 ± 0,1630
0,6490 ± 0,1610

0,1152 ± 0,2102
0,3172 ± 0,1172
0,5676 ± 0,0806
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Figure 4. Comparison of both moment based and ML methods
with the true DF corresponding to table 2.

Table 3. ARMA(3,3) fit of data from phoneme \t\
Moment-based estimation ML estimation

β  transition
probabilities

α  transitions
probabilities

β  transition
probabilities

α  transitions
probabilities

β 1=0,0513
β 2=0,0058

α 1=0,5341
α 2=0,0237
α 3=0,0237

β 1=0,1073
β 2=0,0089

α 1=0,4329
α 2=0,0191
α 3=0,0191
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Moments-based estimation
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Figure 5. Histogram of the observed duration of the phoneme \t\
using 175 observations (solid line) and the estimated DF
(dashed line) using a three-states Markov sub-chain.

Table 4. ARMA(3,3) fit of data from phoneme \x\
Moment-based estimation ML estimation

β  transition
probabilities

α  transitions
probabilities

β  transition
probabilities

α  transitions
probabilities

β 1=0,1682
β 2=0,3613

α 1=0,1975
α 2=0,1975
α 3=0,2658

β 1=0,2040
β 2=0,2500

α 1=0,1778
α 2=0,1778
α 3=0,2392
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Figure 6. Histogram of the observed duration of the phoneme
\x\ using 750 observations. Histogram (solid line) and the
estimated DF (dashed line) using a three-states Markov sub-
chain.

6. Conclusions

The approach presented above is a general framework for DF
estimation, particularly if they present slow decaying tails. Both
linear and non-linear approaches have been presented, the first
exhibiting low variance in many practical cases. It may serve as
well as first initialization to the ML method. Application to real
phoneme duration data has been presented. Further work aims to
develop criteria for order determination and the inclusion of the
estimated models in a speech recognition system.

References

[1] S. E. Levinson (1986), "Explicit Modeling of State Occupancy
in Hidden Markov Models for Automatic Speech Recognition”,
Proc. ICASSP´85, Tampa, FL, pp. 5-8, March 1985.

[2] M. J. Russell and A. E. Cook (1987), “Experimental
Evaluation of Duration Modeling Techniques for Automatic
Speech Recognition”, Proc. of ICASSP'87, pp. 2376-2379.

[3] B. Porat and B. Friedlander (1989), “Performace Analysis of
Parameter Estimation Algorithms based on High-Order
Moments”, Int. Journal of Adapt. Control and Signal Proc.,
vol. 3, pp. 191-229.

[4] A. Papoulis (1962),  The Fourier Integral and its Applications,
McGraw-Hill, 1962

[5] H. Hashemi (1993), “Impulse Response Modeling of Indoor
Radio Propagation Channels”, IEEE J. On Selected Areas in
Comm., vol. 11, no. 7, Sept. 1993.

[6] A. Wragg, D.C. Dowson (1970), “Fitting Continuous
Probability Density Functions Over [0,∞) Using Information
Theory Ideas”, IEEE Trans. on IT, March 1970.

[7] M. Lang, B. Frenzel (1994), “Polynomial Root Finding”, IEEE
Signal Processing Letters, vol. 1, no. 10, October 1994.

[8] E. Masry (1983), “Probability Density Estimation from
Sampled Data”, IEEE Trans. on IT, vol. IT-29, no. 5,
September 1983.



[9] J. Vidal, A. Bonafonte, J.A.R. Fonollosa, N.F. de Losada
(1994), “Parametric Modeling of PDF using a Convolution of
One-Sided Exponentials: Application to HMM”, EUSIPCO’94,
pp. 54-57, Edinburg, U.K. 13-16th September 1994.

[10] L.R. Rabiner, B.H. Juang (1986), “An Introduction to
Hidden Markov Models”, IEEE ASSP Magaz., pp. 4-16,
January 1986.

[11] A. Moreno (1994), “EUROM.1 Spanish Database”, Speech
Technology Assesment in Multilingual Applications, ESPRIT
Project 6919, Report D6, 1994.


