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Nonlinearly coupled, damped oscillators at 1:1 frequency ratio, one oscillator being driven coherently for efficient 
excitation, are exemplified by a spherical swing with some phase-mismatch between drive and response. For certain 
damping range, excitation is found to succeed if it lags behind, but to produce a chaotic attractor if it leads the response. 
Although a period-doubhng sequence, for damping increasing, leads to the attractor, this is actually born as a hard (as 
regards amplitude) bifurcation at a zero growth-rate parametric line; as damping decreases, an unstable fixed point crosses 
an invariant plane to enter as saddle-focus a phase-space domain of physical solutions. A second hard bifurcation occurs at 
the zero mismatch line, the saddle-focus leaving that domain. Times on the attractor diverge when approaching either fine, 
leading to exactly one-dimensional and noninvertible limit maps, which are analytically determined. 

1. Introduction 

A second-order nonlinear oscillator under 
harmonic excitation is an usual model for de
terministic chaos in open, dissipative systems. 
Classicals such as the pendulum [1], Van der Pol 
[2], and Duffing [3] equations show chaotic 
behavior. For nonlinear oscillators, however, 
nonautonomous, harmonic excitation is just one 
particular model; basic to it is the fact that the 
oscillator frequency is amplitude dependent, the 
response thus getting out of phase with sine-time 
parametric or forcing laws. An opposite model 
would keep driving at a definite phase with the 
response, feeding energy coherently, by way of 
feedback, to achieve efficient excitation. In this 
paper we explore whether, and how, a phase 
mismatch might make the response chaotic. 

1 Present address: Biomedical Engineering Department, 
Northwestern University, Evanston, IL 60208-3107, USA. 

Chaos is precluded if the equation for the 
oscillations, now autonomous, is second order, 
as in a swing. To get a complex dynamics on a 
low-dimensional manifold, we thus consider two 
linear oscillators under weak (nonlinear) cou
pling, damping, and coherent, non-periodic exci
tation on one of them. We then expect to end up 
with 3 first-order differential equations for two 
amplitudes and a phase-difference (the phase of 
each oscillation being unimportant by itself); 
they might thus resemble equations for resonant 
3-wave coupling with two waves equally damped 
and a third one excited. This reduced case, 
studied in plasma physics [4-6], only involves 
two wave amplitudes; three-wave interaction is 
discussed by Guckenheimer and Mahalov [7]. 
There,are old and new examples of coherent 
excitation of physical oscillators [8]; driving 
economical cycles might be a social application 
of interest. 

In the present work we consider oscillators 
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with a 1 :1 frequency ratio arising in a symmetri
cal system, the "spherical swing". The weak 
forcing of a spherical pendulum along a given 
horizontal axis following the usual sine-time law 
was studied by Miles ,[9], who found that chaos 
might set in no matter how weak the excitation; 
attempts at simple, experimental checks have 
provided partial agreement with theory [10]. Our 
problem differs essentially from Miles' in that, as 
in a swing, we take forcing coherent with the 
response along its own direction; because of the 
nonlinearity, it cannot then keep phase with the 
response along the perpendicular horizontal di
rection. This non-periodic drive leads to a 3rd-
order system of equations, as against a 4th-order 
system for the usual, harmonic drive [9]. 

In section 2 we obtain model equations with 
phase-mismatch and damping parameters; we 
avoid the formalism of feedback [11], Section 3 
gives simple analytical and numerical results, 
showing that a chaotic attractor does develop 
within some definite parametric domain. In sec
tion 4 we show that this attractor is born as a 
hard (as regards amplitude) bifurcation at two 
parametric lines, when a saddle-focus enters a 
phase-space domain of physical solutions; this 
may result in exactly one-dimensional and non-
invertible return maps. In sections 5 and 6 we 
analytically derive such maps, which are bimodal 
near the corner of the lines. Results are summa
rized in section 7. 

2. The model equations 

Consider a spherical pendulum driven along a 
horizontal direction x (say by motion of its point 
of support), with a force per unit mass of bob 

fx = eg sin (ot, (1) 

e being small and to close to the natural fre
quency (o0 = (g/R)1'2; R is the radius and v = 
(co2 — a>l)/(o2e2/3 is of order unity [9]. No matter 
how small e, there is a time-scale for nonlinear 

coupling of oscillations along the horizontal axes 
x and y. Introducing a linear drag (per unit mass) 
~ae2l3a>0 x velocity, and a slow scale T = 
^e2/3(oQt, Miles posed the solution as 

x 
.—.... =j? i(T) cos tot + q^r) sin a>t, 
e xv 

y 
—fjj- = p2(r) COS cot + q (T) sin cot, 

and found averaged equations for ply qx, p2 and 
q2, involving the parameters a and v. Rewriting 
x and v as almost sinusoidal, 

-fjj- = a(r) cos[cot + <£(T)] , 
e K 

~~- = b{r) cos[(ot + ^(T)] , 
€ K 

we can obtain the equations for the slow evolu
tion of amplitudes a, b, and phases cp, i}/, directly 
from system (2.13a-d) in ref. [9], 

d=— oca— ~ab sin 2(<f> — \}/) — cos cf> , (2a) 

j , = v -la
2 +\b2[l - § cos2(<£ -<A)] + - ^ , 

(2b) 

b = -ab + Iba2 sin 2(<f> - <//) , (2c) 

$ = v - j-b2 + \a2[l -1 cos 2(tf> - iff)]. (2d) 

The flow divergence of eqs. (2a-d) is constant 
and negative: 

1 d / N d<j> l d . dip 

as given by Miles for his equivalent system. 
Here we consider a different driving force, 

fx = -egp sin[o>f + <£(T) + o-] , (V) 

coherent with the response. Since we have 
—x K a sin(cot + <f>) as e -*0 , we may write 

fx a (p/a)(x c o s °"~~ (OX s m &); f ° r o- = 0, the 
power, fxx, would be positive throughout. Al
lowing, however, for a constant phase-mismatch 
o; the range of interest for excitation would 
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clearly be - i -n -<<r< | iT . We also allow a slow 
adjustment of drive strength through a factor 
p(a)>0 dependent on the excited amplitude. 
Only the last term in eqs. (2a), (2b) need be 
modified. One may find the new equations by 
comparing —p sin(w£ + <p + cr) in (1') with sin wt 
in (1), both written in terms of sin((ot + <p) and 
cos(w£+ <p), 

a — —aa — f ab2 sin 2{<p — t/f) 4- p cos o-, (2a') 

4> = v - \a2 + \b2[l - \ cos 2{4> -*ff)]+^ sin a . 

(2b') 

We could now remove v from the problem by 
absorbing it into both (f> and iff (<£, </?—»<£ + 
vT,ift + VT) : for coherent driving there is no a 
priori frequency a>. Actually, the difference 
between eqs. (2b') and (2d), together with (2a') 
and (2c), yields equations for a, 6, and y = 2(<f> — 
iff) in a reduced three-dimensional phase-space, v 
just dropping off. Though not essential to chaos, 
we take p{a) such as to have an uniform flow 
divergence, for simplicity, p = ka + k'fa, k and 
k' being arbitrary constants. For k = 0 the sys
tem can be integrated once [12]; here we con
sider the next simple case, k' = 0, and set k = 1 
without loss of generality. Note that for the 
amplitude a (but not b) to grow indefinitely as 
desired, p should indeed increase with V as fast 
as the drag, aa; also, p(a) <xa leads to a natural, 
simple form for fx when cr - 0, fx*x. 

Rescaling time and energy, 2T-H>-T, | 'a =A, 
~b =B, we finally obtain the equations for our 
model, 

A = (cos a - a)A - AB sin y , (3a) 

B = -aB + ABsiny, (3b) 

y = sin <i — (A — B)(l - cosy) . (3c) 

This system, aside from different meanings for 
growth rate and mismatch, is similar to a system 
for reduced 2-wave cubic coupling derived from 
the nonlinear Schrodinger equation in ref. [6]; 
eqs. (6a-c) there, when conveniently rear

ranged, differ only in the phase-difference equa
tion, which would read 

y = sma--(A- B)(l - cos y) - ±B . (3c') 

We shall comment on this difference in section 4. 

3. Attractors of the model 

We first go over several features of system 
(3a-c) that are readily determined analytically, 
(i) The flow has a divergence, dA/dA + dB/ 
SB + dyldy = cos a — 2a, uniform throughout 
phase-space, which is a ID torus ( y } x a plane 
(A,B). (ii) The surfaces A = 0 and B = 0 are 
invariant, A and B keeping positive and 
bounded at any finite time if initially positive, 
(iii) The normal rest position, A = B-0} is a 
stationary equilibrium, the equation for y then 
being physically irrelevant, (iv) There is, in 
addition, one stationary point P given by the 
equations 

a cos a — a 
v sin yP

 v sin yP 

1 — cos yP sin or 
sin yp ^ t a n ^T p = 2a - cos a- > 

A and B are positive for either a < 0, a < \ cos a 
or <r>0, ±cos o-< a < cos a (fig. 1). (v) The 
characteristic equation for P is 

3 2 2 <*(cos cr — a) 
s + (2a — coseAs + sin a r •-, s 

K } (2a - cos of 
a cos o- — a ,„ t 2~. 

+ —- — (1 - 4a cos o-+ 4a ) = 0 . 
2 2a — cos a- v 

(4) 
In the cr > 0 domain, there is a negative root and 
a Hopf bifurcation at the line a=^(coso~ + 
sincr), the fixed point being stable below it; in 
the cr < 0 domain the real root is positive and P 
is always unstable. 

We next show that chaos will not set in outside 
the parameter domain defined by ycos cr<a < 
cos cr, cr>0 (fig. 1): For a > cos cr, the equilib-
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. Ot 

Fig. 1. Attractors vs damping coefficient a and phase mis
match a; A = B = 0 (bob at rest) above a = cos a (——); 
A - » » , B—»*> (unbounded nonplanar motion) below a = 
}COS<J ( ); >!-»<», B—»0 (unbounded planar motion) for 
-cos cr<a<cos <r, a<0. For icos<x<a <cosCT, o->0, 
equilibrium point below a = ̂ cos a 4- Asm tr ( - • - ) , limit 
cycles or chaos above. 

rium A = B — 0 is globally stable; that equilib
rium is clearly unstable for a < cos o\ For a < 
\ cos a-, the flow divergence is positive, any 
initial phase volume growing monotonically at 
the exponential constant rate cos a — 2a; since 
surfaces of constant energy (A + B) are nested 
with volume <* (energy)2, energy will also grow 
without bound along trajectories starting at arbi
trary points, except possibly for a set of zero 
measure: for negative or, that set includes point P 
above the line a = ̂ (cos a + sin <x), and point P 
and its stable two-dimensional manifold below it. 
For \ cos o- < a < cos a and a < 0, the limit set 
A—><», B-^-0, 0<"y<2ir (mod2ir), is an attrac-
tor; note that phase volumes are now contract
ing. If A and 1/B are large, eq. (3c) gives a 
monotonous decrease for y, 

y= - [ | s i no - l + A ( l - c o s y ) ] , (5) 

A (and B) changing little within the short period 
from y = 2Tr to y - 0 , AT = 2Tr/(2|siner|A)m. 
From (3a) we have 

A/A = cos o - - a > 0 (A -* °° as r -> oo) . (6) 

Also, using eqs. (3b) and (5) to average BIB 
over the period AT, we obtain 

J _ i J^L _ f A sin y dy 1 A(Q) 
AT B{2>n)+a~~ J - y AT ~ AT Ltl A(2>n) ' 

o 

yielding, from (6), B /B — B — cos a- - 2a < 0 
(B^O as T-»*>). 

Consider therefore the domain ^ cos <x < a < 
cos a, a > 0. Below the line a = ^(cos o- + sin cr), 
the (stable) fixed point P is a global attractor. 
The Hopf bifurcation at that line is found to be 
supercritical [13], but, beyond it, volume con
traction precludes secondary bifurcation of the 
ensuing limit cycle to a 2-torus. Numerical re
sults show, instead, the familiar period-doubling 
sequence. Figure 2 shows orbits for cr = 3.75°, 
projected onto the A~B plane in the interval 
1 0 0 0 < T < 4 0 0 0 , to exhibit long-time attractors: 
(a) a 2-cycle, (b) a 16-cycle, (c) an apparently 
aperiodic attractor; initial values were A0 = B0 = 
| , y0 = yir. For a = 3,75° the simple limit cycle is 
born at ax = 0.5316 . . . . It loses stability at a2 — 
0.696; 4-, 8-, and 16-cycles are born at a4 — 
0.7740, as^0.7922, and a16 = 0,7960, respec
tively. The ratios 

aa — a ? ffo- a , 
— -=-4.3 ± 0 . 1 5 , — - = 4.8 + 0 .3 , 
a8 - a4 a16 - as 

suggest that the sequence approaches Feigen-
baum's constant, 4.669 . . . . 

Figure 3i plots each maximum in A along the 
orbit against the previous one: the points fall in a 
smooth arc with a simple extremum, a nearly 
one-dimensional non-invertible map, Ak+t(Ak), 
the Cantor structure being here very weak. The 
exponent of the parabola at the extremum, as 
simply estimated from the graph, differs by less 
than 5% from the value 2 appropriate for 
Feigenbaum's constant. The fixed point at the 
bisector is unstable. The multiple fixed points for 
doubling, Ak+2(Ak), quadrupling, Ak+4{Ak), 
etc., iterates, also prove to be unstable (figs. 3ii, 
hi). 

The attractor exhibits sensitivity to initial 
conditions. The distance D between trajectories 
starting at close points, one being the point at 
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Fig 2. Orbits projected onto A-B plane at large times, for o- = 3 75° and (a) a = 0 75, (b) a = 0 79675, (c) a = 0 82 

T = 2000 in the orbit of fig. 2c, diverges exponen
tially in the mean before saturating at about the 
size of the attractor (̂ 4 maximum ~44, fig. 3i): 
the largest Lyapunov exponent, X1 = d In Dldr — 
1.95 Xl0~ 2 , is constant and positive (fig. 4). 
Using an estimate reasonably contrasted for 
uniform volume-contraction [14] we get a fractal 
dimension for the attractor, 

Dimension = 2 4-
1a — cos o- + Aa 

-2 .029 + 0.001. 

Figure 1 resumes the variety of attractors. For 
o-<0, feedback succeeds, A diverging 
(\ cos a < a < cos o-), unless drag is too strong, 
bringing the bob to rest (a > cos a-), or too 
weak, A and B diverging ( a < ^ c o s c r ) . How
ever, for a positive, even if small, the range 
\ cos or < a < cos a exhibits bounded, nonplanar 
motion: oscillations with constant amplitude 
(a < ^ sin cr + \ cos a), and either oscillations of 
periodic amplitude or chaos (a > \ sin er + 
\ COS O"). 
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Fig. 3. (i) Approximate one-dimensional map for successive maxima of A on the attractor of fig. 2c; also, maps for (ii) double, 
and (iii) quadruple iterates. 

4. Zero mismatch or growth rate 

We show here that bifurcations at <j = 0 and 
cos a - a = 0 (rather than the Hopf bifurcation 
at 2a = cos a + sin a) give rise to our chaotic 
attractor. For the discussion to follow, it is worth 
recalling known features of quadratic wave inter
action. For the reduced 2-wave case, there exists 
a time-dependent first integral at zero frequency 

mismatch [4] and an invariant surface at zero 
growth rate [5]. For the general 3-wave case, 
there exists a first integral if mismatch or all 
three growth and damping rates vanish [15]; the 
reduced 2-wave results may be proved to be 
consequences of this. 

In our system growth and damping vanish 
jointly at a =cos<r = 0 (fig. 1) and a first inte
gral, [̂ 4(1 — cos y) — sin a]B = constant, then 
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Fig. 4. Distance D(T) between points initially close on the 
attractor of fig. 2c. 

exists; this family of surfaces is, however, struc
turally unstable. At a = c o s < x ^ 0 (<r>0), one 
just has the zero-constant degenerate case: an 
invariant surface, A{\ - cos y) = sin a, times the 
invariant plane B = 0, producing a line of fixed 
points. On that plane, where A is constant, there 
is a homoclinic orbit, sin y = \ sin <r(l + cos y )T, 
at A — \ sin o-, and periodic orbits at lower A; at 
higher A, two heteroclinic orbits join each y > TT 
fixed point to its y < n symmetric point. On the 
invariant surface, heteroclinic orbits again map 
the line of fixed points into itself (y < 2a into 
y > 2o- values). Only the 2a < y < TT fixed points 
are stable, point P of section 3 being the 2cr-end 
of this range; also, the invariant surface is 
unstable for y > TT. 

At a = cos a = 1 (fig. 1) mismatch and growth 
rate vanish, no periodic orbits are left, and the 
invariant surface is y = 0 (y = 2Tr). A dense, 
stable set of homoclinic orbits, sin y — A(l — 
cosy)r, A = constant, fill the plane B = 0. This 
set is, again, structurally unstable. For a < 
coso- = l , there is a time-dependent first inte
gral, AB{1 - cos y) exp(2a - 1) T = constant. 
The generic long time behavior is ,4<*exp(l -
a) T, yA =* 2(1 - a), B « exp(2 - 3a) T, B vanish
ing for a > | . 

Now, the invariant surface is also structurally 
unstable: off condition a = cos cr, only the fixed 
point P is left. For a > cos <T, the dynamics was 
quite simple, A = B — 0 being a global attractor. 
This referred, however, to the phase-space do
main of physical solutions A > 0, B > 0, whereas 
P now lies (for a > 0) in the domain A > 0, 
B < 0 , separated by the invariant plane S = 0 ; 
for a — cos cr < 1, P is a saddle-node near this 
plane with a two-dimensional stable manifold, 
the unstable manifold allowing both vanishing 
and unbounded, explosive solutions [—B =̂ 
A<xy~2(x (constant ~T)~2]. For a = cos cr, eq. 
(4) has two zero roots, and a negative root 
corresponding to the two heteroclinic orbits 
reaching P from its symmetric fixed point. For 
small, negative a — cos cr, P is a saddle-focus in 
the physical domain with a two-dimensional 
unstable manifold, leading to a 'screw', Rossler-
type [16], chaotic attractor. 

This is a hard bifurcation as regards am
plitude: the full size attractor exists for vanish-
ingly small cos a - a but not for cos cr — a = 0, 
the double limit T—»<», a -^coso- thus being 
singular. Rewrite eqs. (3a,b) in terms of energy 
and non-driven energy fraction, and rescale 
appropriately: 

' cos a ' A + B ' 

*-(*.-<»>*. {^-^^). <*> 
A = A(1- A)(E sin y - 1) . (7b) 

In the physical domain (A>0) eqs. (7a,b) show 
that E will decrease without bound no matter 
how small A*, if negative (a above cos cr, fig. 1). 
At A^ = 0, however, E decreases monotonously 
but remains finite; though clear from our earlier 
discussion, it may be shown explicitly by deriving 
a lower bound from (7a,b), 

£ ( T > 0 ) > £ 0 ( 1 - 4 0 ) 1 ' ( 1 - E » \ 

with Ao = A{0) and EQ^E(0) assumed already 
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less than unity. Similarly, the limits T-^>°° and 
At->0+ (a below coso-) do not commute; no 
matter how small A*, if positive, there arc, 
genericaliy, time legs with increasing energy. 

Note that the ultimate time scale for E to 
vanish in eq. (7a) diverges as 1/JAj in the limit 
A% —>Q~. For A^^0 +, the time between energy 
maxima on the chaotic attractor is related to the 
•d* = 0 heteroclinic structure, as shown in section 
5, and is also divergent (the bifurcation is soft as 
regards frequency). Thus, the limit map EM,{EM) 
relating consecutive maxima at M and M' may 
have no Cantor structure left, and be exactly 
non-invertible and one-dimensional. Further, the 
times from M to the following minimum m, and 
from m to A/', diverge differently; this suggests 
looking at EM.(EM) as a composition of partial 
maps EJEM), EM.{Em). If just one partial map 
presents a extremum, the full map will show the 
unimodal signature of chaos (in the case of fig. 
2c, the map M^m is found to be monotonous). 

At <r = 0, \<a<l (fig. 1), there is a hard 
bifurcation too. For \tr\ small the fixed point P is 
again a saddle-focus with a two-dimensional 
unstable manifold; however, as a is varied from 
positive to negative, P leaves the physical do
main, both Ap and B? becoming negative. Fur
ther, the limit <r—>0, T-»°O is also singular. As 
shown in section 3, for a negative, no matter 
how small, y decreases without bound moving 
periodically from 2IT to 0, whereas for o- = 0, y 
decreases asymptotically to zero, and for <J 
positive, no matter how small, there are generi
caliy time legs with increasing y in eq. (3c). 
Finally, note that as |cr| — 0̂ both \A?\ and |BP | 
diverge, and so do the size of the chaotic 
attractor and the time between its maxima, 
washing out again the Cantor structure. 

We rewrite eq. (3c) with the aid of an auxiliary 
quantity g, 

y = EA(1 - cos y) - sA^g (e = tan a) , (7c) 

E{l-A){\-cosy) = e(\+gA,); (8) 

g is a measure of the distance to the invariant 

surface for <4* = 0, now reading E{1-A){1-
cos y) = e, the line of fixed points being A = 0, 
£•(1 — cos y) = e. In the next two sections we use 
eqs. (7a-c) and (8) to obtain analytical maps for 
the attractor. It will prove convenient to derive 
the equation for g, 

( e sin y \ 

g=( i + g A,) ( i - g T ^*y. w 
We note here that system (3a,b,c') is at 

variance with our system concerning the in
variant surface for a = cos o\ To clarify this 
point, consider the system A = KA + Bf(A, y), 
B = -aB + BF(A,y), y = h(A,y) + BH(A,y), 
which is linear in B. If the nonlinear terms are 
energy and phase-volume preserving, one must 
have d(H + hA)/dy = 0. Now, if the stronger 
condition H + hA = 0 is actually satisfied, then, at 
vanishing linear growth rate A, h(A, y) = 0 is an 
invariant surface of the system. For eqs. (3a,b,c) 
and eqs. (3a,b,c') we have H + hA = 0 and H + 
hA — -~, respectively. 

5. Limit map at vanishing growth rate 
(A^ a: coso- — a—»0+) 

We analyse separately, as suggested, the two 
legs M—>m, m^M' of a full M—>M' iteration. 
We prove that, for A : i :->0+ , a M^m trajectory 
follows a heteroclinic orbit on the A:t — 0 in
variant surface; if y in the orbit reaches beyond 
IT, g diverges as A.^^0+ (the flow being un
stable on that surface) but gA* vanishes. A 
m-^M' trajectory just moves up in energy, on 
the line of fixed points, if ym <TT. Otherwise, the 
trajectory first follows a heteroclinic orbit in the 
plane B - 0 (A = 0), from the ym fixed point to its 
symmetric point; if Em>Ep, the motion on the 
line of fixed point does not occur (the motion on 
this line, and the beginning of the leg M~>m, 
are part of the spiraling motion between the 
plane 5 = 0 and the saddle-focus P that collapses 
into it as A^^0+). We advance in figs. 5i, ii a 
schematics of the maps derived. 
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(i) 

Fig. 5. Schematics of maps of extrema for the limit a — 
cos a —» 0~: (i) partial map m —>M', (ii) partial map 
M~^m( ), and full map M^>M' ( - — ) . Z is defined in 
eq. (13); the peak Z™!* increases with a~L. 

5.1. Maximum M(A = An> A>0) to minimum 
m{A = A*, z i<0) 

Assume that (i) 4,-terms in eqs. (7a,c) may 
be dropped from M to m as Am vanishes. Then 
we have 

dy sin y 
- T ? r = c o s y - 1->E-^— - const. , (10) 
<SJb 1 — cos y > \ J 

and, evaluating the constant at both ends of the 

leg, 

£ . 
sm JM 

= £ -
smy„ 

1 - cos yM
 m 1 - cos y ' 

(11) 

Assume also, that (ii) gMA* and gmA* vanish in 
the limit A*-»0. Then, using (8) at M and m 
yields immediately 

EJX - cos yM) = e = £ m ( l - cos y j . (12) 

From eqs. (11) and (12) we obtain yM{EM,e), 
TW(^M> e) a n d , i n particular, the map for this leg, 
Em(EM, e)> which takes a very simple form (fig. 
5ii), 

Zm=\ZM-2\ (Z^(2eE~e2)1'2) (13) 

with Z as map variable; from its definition, e = 
tan a- and eq. (12) we have 

tan a 
EM sin y., = -,— 

M YM t a n l y M 

JM ' 

E>n*=-£r£-=±z- (ZMS2) 

Zm = l corresponds to the fixed point P for A^ = 
0. The attractor lies in the interval Z M ^ 1 ; ymi 

increasing with ZM, reaches TT at Z w = 2 (Zm = 
0). 

To justify assumption (i), i.e., eq. (11), set 4^ 
small and ZM — 1 = 0(1). For the initial stage 
(E = EM> y = yM) we use eqs. (7a - c) and (9) to 
find results valid as long as A^ exp(ZM — 1) r is 
small: 

A 
- e x p ( Z M - l ) T , 

= \8M- -y-) exp(-Z M r ) + y - , 

E 

y 

~EM 

EM 

~JM 

+ A. 
l-exp(ZM-l)r 

zM-i 
+ T 

(14a) 

(14b) 

(14c) 

1 - exp(ZM - 1) T _ T 

zM-\ 
+ • 

-w 

+ # M 

1 \ l - e x p ( - Z M r ) 
Z , Z , 

(14d) 

Taking now 4*—>0, T—»<» in such a way that 
K&xp(ZM-l)T<lfA* yields A/d*^™, E-
EM^>0 and y — y M -^0 , thus validating the left-
hand side of (11); we used gmA^-^>0y from 
assumption (ii), in eq. (14d). One similarly 
establishes the right-hand-side of (11) by deriv
ing eqs. (14a-d) for the end stage (E~Em, 
7-7™), with gm instead of gM> ±Zm instead of 
ZM for Z M ^ 2 , and negative times (T = 0 at m, 
now). Note that a term in y - y m growing as 
exp(-Z„,r) with negative time, for ZM<2, is 
actually absent because, as shown in our discus
sion of assumption (ii), one has gm = 1/Zm for 
such ZM. 

The end stage result is clearly valid for vanish-
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ing Zm (ZM = 2), when we have A — A^ e T, g = 
8m + T, E-Em^EmAt(e~T ~l + r), y - y „ , -
eA^(e T — 1 +yT2 +g,„T). One may also relax 
the condition ZM —1 = 6(1), introduced at the 
start. Assuming Zm -l=aAP = 0(AP), 0<p < { , 
eqs. (11)—(13) would give full leg changes (ym -
yu)fe=~{Em-EM)iEM = 0(A^. Near M we 
take 4 t - » 0 , r^™ with Kexp(aApT)<llA^ 2p 

and find A/A^«>, (y - yM)l(ym -yM)=-(E -
EM)l(Em — EM)~-»0; a similar result holds at m. 
This establishes eq. (11) for ZM — 1 vanishing 
with A*. 

Concerning assumption (ii), we defer to sec
tion 5.2 proving that gM-^> HZM < 1 as 4*-H>0. 

Consider here gm, first for ZM<2, ZM — 2 = 
6(1). Then we have y < I T throughout, and eq. 
(9) shows that g keeps values of order unity as it 
evolves from IIZM (g would be negative for 
g> (1 — cosy)/e siny, which is a growing func
tion of y ) ; further, as A finally decreases to again 
approach At at m, y/y in eq. (7c) becomes 
small, and then g follows y quasisteadily, 1-
ge s iny/( l — cosy) = 0, to yield gw = ( l _ 

cos ym)ls sinym = IIZm as advanced. 
For ZM>2, y reaches beyond TT, and then g 

grows exponentially. Note that A in eq. (14a) 
would reach order unity for r — l n l M * , sug
gesting a leg duration of order In IIA ^ to make 
gm diverge as some power of l / 4 # . (For ZM = 2 , 
the behavior found near m, g= gm + T, suggests 
that gm then diverges as In 1 /4J . To prove that 
the power is weaker than linear and thus 
gm / i*-»0, one uses (7c), (8) and (12), dropping 
JA*-terms, to obtain an equation for y through 
the main stage of the leg, 

y = sin y — e 
(sin y M - e ) ( l - c o s y ) 

1 - cos yM 
(15) 

Matching the solution of (15) to the exact 
behaviors at M and m one determines leg dura
tion and, using y(r) in eq. (9) with the A^-t&rm 
dropped, finally determines gm. Results are given 
in section 6 for the particular case of small s. 

5.2. Minimum m(A = A*, A<0) to following 
maximum M'(A = A#, A > 0) 

For ZM less than 2 (ym <^,Zm< 1) and away 
from 1 and 2, g is of order unity throughout. 
Note that eqs. (14a-d) with m (M') subscripts 
describe the flow at the early (late) stage and, in 
between, when A<At, one has 

E^A*E , y = -egA^ ; (16) 

hence, E and y vary slowly in a time T - l M r 

Since, according to (9), g varies in times r ~ 1, it 
will follow y quasisteadily [g ~ (1 - cos y)/ 
e s iny ] , from gm = l/Zm to gM, = XIZM, (as ad
vanced) at vanishing A+. We can thus write (8) as 

E ( l - c o s y ) = e (sin y > 0 ) (17) 

for the entire leg. Using (17) in the equation 

M' 

J (siny-l/E)d£ 
in 

= J (4, -A)dA/A(l-A) = Q, (18) 

obtained from (7a,b), one gets the partial map 

F£(ZM,)==Ee(Zm), where 

FF(Z) = Z - \ ln(l + Z2ls2) - B tan _ 1Z/e . (19) 

The map (fig. 5i) is actually valid down to ZM = 

1; as ZM grows from 1 to 2, Zm moves from 1 to 

0, and ZM, from 1 to Z£"(fi)> g»v e n by 

EXZ'M*) = Q- (20) 

Since the duration of the leg is of order 1M*, the 
minimum of A is exponentially small, ln(-4*/ 

For 2 < ZM < 3, ZM - 2 = 6(1), we again have 
0 < Zm < 1, but now sin ym is negative. Since we 
have gmA^<l, g grows exponentially in (9) at 
constant y, reaching a value of order 1IA* in a 
time — Inl /d*. Then y itself starts to vary 
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rapidly as given by (16), y = —egA^. Equation 
(9) takes now the form 

- (1 + gA^ge sin y 

6 1- cos y 

and thus one finds 

1 — cos y 

l + ^*g 
= const. = 1 — cos ym = E, (21) 

As y decreases, g grows to a maximum 

g(y 
^ 1 + c o s y*. 

IT) - - . 
y 1 — cos y 

A. 

and then decreases too. At a value y£ = 2TT — 
Jrn < 7T' S^* becomes small and y(r) slows down, 
g then approaching the value Em sin y^ = 
Em|sin ym\ = Zm. Note that (a) the variation of E 
during the ym->y* evolution vanishes with A% 
(E* - Em -> 0) and (b) the ratio AIA* at y* is of 
the order of some power of A*. Since Zm is less 
than unity, we are at y*t in the same conditions 
prevailing in the ZM<2 range. Thus, the leg 
now proceeds to a final value ZM. again de
termined by the map Fe(ZM.) = Fe(ZM), AiA^ 
dropping in between to an exponentially small 
minimum. Clearly, the map is actually valid at 
Zm=2. 

For ZM > 3, finally, we again have sin ym < 0, y 
decreasing fast from ym to y* = 2-rr - ym. Now, 
however, we have Zm > 1, so that A never gets to 
be exponentially small, being already increasing 
when y reaches y*. From the equation y = e -
Elfl(l - cos y), obtained from y = —egA* and 
(21), one may use the inequality 

f Em sin y - 1 
^r~ *—r d y > 0 

J Em(l-cosy)-e 

to prove A less than A* when y reaches y^. In 
the limit A^^-0, A grows then to its final value 
A*, at constant E and y. We thus have Zm = ZM,, 

8m — SM- ~ l ' Z M , . 

The partial map m^M' is therefore as shown 
in fig. 5i, 

FE{ZM,) = FE(Zm), 0 < Z , „ < 1 , 

^ M ' Z > Z — 1 • 

(22a) 

(22b) 

Figure 5ii shows both the partial map M->my 

eq. (13), and the full map M^M', 

FXZM.) = Fe{\ZM-2\), 1 < Z M < 3 , (23a) 

Z M , ^ Z M - 2 , Z M < 3 . (23b) 

Hughes and Proctor gave a similar map, at small 
growth rate, for the reduced 2-wave quadratic 
coupling [5]. We emphasize that (23) (a) is the 
exact map for the attractor of system (7), in the 
singular limit T—» +«>, A^-^-0+ (which is not the 
attractor at A.^. = 0), and (b) is valid for vanish
ing ZM — 3 as A+-+0. Figure 6 compares numeri
cal maps for A* small with the limit form (23); 
the agreement is very good and improves with 
decreasing A*. Naturally, the iteration time 
diverges when approaching the limit A^-^0 + . 

We note here a few, simple features of (23). 
The maximum at ZM = 2 is mapped into the 
minimum at ZM = 3 for e such that Z ^ x = 3, as 
given by eq. (20); this occurs at £ = t a n a — 
0.2031, or a = 11.48°. For larger <x, the attractor 
does not include the minimum, its map appear
ing as unimodal (fig. 6i). At a = 11.48° there 
exists an infinite number of degenerate homo-
clinic orbits: the (maximum) critical point tends 
to the unstable fixed point at ZM = 1 under 
backward iteration, and lands on the same point 
under (finite) forward iteration. Below 11.48°, 
the map is bimodal (fig. 6ii), and homoclinic 
orbits are n on degenerate; however, for values of 
E in (20) such that Z^1x is an odd integer above 
3, the map has degenerate homoclinic orbits. 
When Z™K in (20) is any even integer above 2, 
the map presents a superstable orbit; in particu
lar, for Fe(6) = 0, i.e., e = 0.01523 (o- = 0.8727°), 
there is a period-3 superstable orbit. 
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Fig. 6. (a) Map ZM,{ZM) at v = 17°, for a - c o s « r - ^ 0 (solid line, formulae (23)), and a - c o s a = 0.0015 (dots, 
results), (b) Map at a = 3.75° for a - c o s o - - » 0 " and a - cos a = 0.0015, 0.01. 
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6. Limit map at \anishing phase mismatch 
(o- tan le 0+) 

In the joint limit Al¥—>0+, e—»0+, the map is 
given by eq. (23b) and by the proper limit of eq. 
(23a), using (19), 

ZM, - In ZM, = \ZM - 2| - \n[e2 + (ZM - 2)2j 2 T 1 / 2 

1 ^ Z M < 3 - (23a') 

The map is singular: there is a range \ZM — 2| = 
0(e) for which the e-term cannot be ignored no 
matter how small; ZM, and the attractor size 
diverge as In lie. We now improve upon (23a', b) 
by considering the limit e —> 0+ at nonvanishing 
A^. Lacking an explicit heteroclinic structure for 
that limit we restrict the study to small A^ (>e), 
keeping terms of first order. Separate analyses 
are required for up to eight regions in the 
attractor, each involving several time stages that 
need matching. This makes for an overlong 
derivation, which we omit. (It may be requested 
from the first author.) 

For the leg M—>m one must first solve for 
y(j)> g(T) t o lowest order in A*, as indicated in 
section 5. One result is gm(Zm, A*) for ZM > 2, 

+ 

X 

ZM~2 

4TT 

[A,(ZM-2f] _ ^ 2 l ( 2 M - 2 ) / ( Z M - 3 ) 
[2(Z*-1)1 

2<(ZM~l) 

(24) 

For ZM — 2 one finds independently gm = — 
ln{jezl:i:[e2 + ( Z M - 2 ) 2 3 2 } , which matches (24) 
smoothly in the proper limits; note that gmA^ —» 0 
as A^—^0 for all Z w > 2 , as advanced in section 
5. The partial map Zm(ZM, At), for ZM < 4 , is 

Z_ = ZM~2 + A, r ta(.^(z--i)a 

A*ZM 

ZM~2 

zM-i 
I n l ^ r ^ ' l + i ^ >(25) 

the underlined term being retained only for 3 s 
ZM < 4, when (24) is used. 

The map ZM,(Zm, zi*, e) for the leg m-*M' 
reads 

ZM,-(l-iAt)lnZM, 

= 4 * 4 K1±K0 ) zj&* 

- ( l - ^ ) l n ( £
2 + Z f j 1 / 2 + i ^ l n ( ^ ) 

" ( 1 + 1 } ^2 {jTzZ + }n(1+ ^ z j ) > (26) 

with the upper (lower) sign used to the left 
(right) of the maximum of ZM,. The gm-term only 
appears to the right of the maximum (ZM > 2 to 
lowest order), and then gm(Zm,A#) is obtained 
by writing ZM = 2 + Zm in eq. (24). The modified 
Bcssel functions I0, KQ, 71S K^ are evaluated at 
ZmIA^. One can obtain, if desired, the full map 
M—>M' as a single explicit expression by using 
Zm from (25) in (26), and using gm from (24) in 
both equations. This map does recover (23a',b) 
in the limit A^^O (the limits e ^ 0 + , At->0+ 

do commute). 

For the maximum Z™x(^*> ln(l/e)) of the 
map and its abscissa ZM max(-4*), and the mini
mum Z ™ ( A J and its abscissa ZM m ] n(4„), w e 

find, from (24)-(26), 

zr-(i-i^)inzr 
= ( l - z i , ) l n ( l / e ) + ^ l n ( ^ ) , 

Z M B „ = 2 - 4 t l n ( c 7 4 t ) , 

(27) 

(28) 

Z™ = l + A 

+ 

J/2 in 
16 

-n2eA. 

In 
16 3 - —+ . 3/ir 

•*2eAJ 2 \n(16 / IT2 e A J I' 

(29) 

7 —T.—1A 
^M m m J 4 ^ * * 

W T ^ - I + 5 - V 1 9A, 
(30) 

For /l* —> 0, these formulae recover results of fig. 

file:///anishing
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5 and eq. (20) (in the limit e ^ O ) . Since Z™,n -
l~All2{\n{UA«))il2>Ai:\ one has ZM-1> 
A* throughout the attractor; this confirms our 
discussion on the value ZM — 1 in section 5.1 (it 
also avoids a singularity in the first logarithm of 
(25)). Figure 7 shows very good agreement 
between (28)-(30) and numerical results for e = 
0 . 0 1 < 4 ; at such small e the accurate determi
nation of Z]J1X takes a very long computing time. 

As suggested by fig. 7, the minimum at Z M m i n 

is mapped into the maximum at ZM max at some 
finite value A,, Z M J 4 , ) = Z ? ( i * ) ; the ap
proximate use of (28), (29) yields 4* -0 .129 . 
For A* > 4,+ the attractor excludes the maxi
mum, as it excluded the minimum for e > 0.2031 
(A^ = 0)\ the map is bimodal only inside a 
domain by the corner e = 0, Av = 0. The case of 
fig. 2c (£ = 0.06554, A, ^0.1782) lies outside. 
Comparing the numerical results for this case 
with present theoretical results for e = 0+ and A* 
very small gives a 2-10%, still reasonable, dis
agreement. 

7. Summary of results 

A spherical swing is an example of damped, 
nonlinearly coupled oscillators with a 1:1 fre
quency ratio, one oscillator being driven coher
ently for efficient excitation. We explored here 
whether, and how, a phase-mismatch between 
drive and response might make this response 
chaotic. Our model involves parameters for 
damping and mismatch. We found that for cer
tain damping range the excitation succeeds if it 
lags behind, but may produce a chaotic attractor 
if it leads the response. 

Although the attractor may be reached 
through a Feigenbaum sequence as damping 
increases, it is actually born elsewhere. A hard 
(as regards amplitude) bifurcation occurs at the 
zero growth-rate parametric line, as damping 
decreases, when an unstable fixed point crosses 
an invariant plane to enter as saddle-focus a 
phase-space domain of physical solutions. A 
second hard bifurcation occurs at the zero-mis-

3 . 5 

2 . 5 -

1 . 5 -

0 . 5 

0 . 0 1 

Fig. 7. Coordinates of extrema in the map ZM.(ZM) vs Ax - (cos a - a)/cos a, for € = tan a = 0.01. Formulae (28)-(30), 
numerical results, x. 
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match line, when the saddle-focus leaves that 
domain. Times on the attractor diverge as one 
approaches either line, resulting on exactly one-
dimensional and non-invertible (no Cantor struc
ture) limit maps, which are bimodal near the 
corner of those lines. A complex heteroclinic 
structure and a line of fixed points existing at 
zero growth-rate allow to analytically determine 
such maps; this effectively represents an exact 
solution of the chaotic dynamics of the differen
tial equations [17]. 

Work in progress concerns mismatched coher
ent driving for general cubic coupling, and other 
frequency ratios. Tentative results, yet to be 
published, suggest that some of the features 
found here may be generic. This might be useful 
for a broader problem closely related to ours, 
wave interaction in a nonlinear medium, which is 
the basis of current work on spatio-temporal 
chaos [18]. 
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