14 research outputs found

    The African Cichlid Fish Astatotilapia burtoni Uses Acoustic Communication for Reproduction: Sound Production, Hearing, and Behavioral Significance

    Get PDF
    Sexual reproduction in all animals depends on effective communication between signalers and receivers. Many fish species, especially the African cichlids, are well known for their bright coloration and the importance of visual signaling during courtship and mate choice, but little is known about what role acoustic communication plays during mating and how it contributes to sexual selection in this phenotypically diverse group of vertebrates. Here we examined acoustic communication during reproduction in the social cichlid fish, Astatotilapia burtoni. We characterized the sounds and associated behaviors produced by dominant males during courtship, tested for differences in hearing ability associated with female reproductive state and male social status, and then tested the hypothesis that female mate preference is influenced by male sound production. We show that dominant males produce intentional courtship sounds in close proximity to females, and that sounds are spectrally similar to their hearing abilities. Females were 2–5-fold more sensitive to low frequency sounds in the spectral range of male courtship sounds when they were sexually-receptive compared to during the mouthbrooding parental phase. Hearing thresholds were also negatively correlated with circulating sex-steroid levels in females but positively correlated in males, suggesting a potential role for steroids in reproductive-state auditory plasticity. Behavioral experiments showed that receptive females preferred to affiliate with males that were associated with playback of courtship sounds compared to noise controls, indicating that acoustic information is likely important for female mate choice. These data show for the first time in a Tanganyikan cichlid that acoustic communication is important during reproduction as part of a multimodal signaling repertoire, and that perception of auditory information changes depending on the animal's internal physiological state. Our results highlight the importance of examining non-visual sensory modalities as potential substrates for sexual selection contributing to the incredible phenotypic diversity of African cichlid fishes

    Behaviours Associated with Acoustic Communication in Nile Tilapia (Oreochromis niloticus)

    Get PDF
    Sound production is widespread among fishes and accompanies many social interactions. The literature reports twenty-nine cichlid species known to produce sounds during aggressive and courtship displays, but the precise range in behavioural contexts is unclear. This study aims to describe the various Oreochromis niloticus behaviours that are associated with sound production in order to delimit the role of sound during different activities, including agonistic behaviours, pit activities, and reproduction and parental care by males and females of the species.Sounds mostly occur during the day. The sounds recorded during this study accompany previously known behaviours, and no particular behaviour is systematically associated with sound production. Males and females make sounds during territorial defence but not during courtship and mating. Sounds support visual behaviours but are not used alone. During agonistic interactions, a calling Oreochromis niloticus does not bite after producing sounds, and more sounds are produced in defence of territory than for dominating individuals. Females produce sounds to defend eggs but not larvae.Sounds are produced to reinforce visual behaviours. Moreover, comparisons with O. mossambicus indicate two sister species can differ in their use of sound, their acoustic characteristics, and the function of sound production. These findings support the role of sounds in differentiating species and promoting speciation. They also make clear that the association of sounds with specific life-cycle roles cannot be generalized to the entire taxa

    Singing above the chorus: cooperative Princess cichlid fish (Neolamprologus pulcher) has high pitch

    No full text
    Teleost fishes not only communicate with well-known visual cues, but also olfactory and acoustic signals. Communicating with sound has advantages, as acoustic signals propagate fast, omnidirectionally, around obstacles and over long distances. Heterogeneous environments might favour multimodal communication, especially in socially complex species, as the combination of modalities’ strengths helps overcome their individual limitations. Fishes of the ecologically and morphologically diverse family Cichlidae are known to be vocal. Here we investigated sound production in the socially complex Princess cichlid Neolamprologus pulcher from Lake Tanganyika in East Africa. We show that wild and captive N. pulcher produce only short-duration, broadband high-frequency sounds (mean: 12 kHz), when stimulated by mirror images. The evolutionary reasons for this “low frequency silencing” are still unclear. In laboratory experiments, N. pulcher produced distinct two-pulsed calls mostly, but not exclusively, associated with agonistic displays. Princess cichlids produce these high-frequency sounds both in combination with and independent from visual displays, suggesting that sounds are not a by-product of behavioural displays. Further studies on the hearing abilities of N. pulcher are needed to clarify whether the high-frequency sounds are used in intra- or inter-specific communication
    corecore