439 research outputs found

    Proteomic analysis of the marine diatom Thalassiosira pseudonana upon exposure to benzo(a)pyrene

    Get PDF
    Abstract Background The polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants ubiquitously distributed. They are generated by incomplete combustion of organic materials such as wood or fossil fuels. Due to their carcinogenic, mutagenic effects and to their wide distribution in the environment, these pollutants pose many concerns to researchers and regulators. In our laboratories we investigated the effect of Benzo(a)pyrene (BaP) exposure in the marine diatom Thalassiosira pseudonana, which has become an important model organism in aquatic toxicology studies. Results In order to investigate the mechanism of action of PAHs, we exposed the diatoms for 24 h to 36.45 µg/L of B(a)P which inhibits the growth by about 30 % and analysed the relative protein expression profile by a quantitative proteomics approach based on iTRAQ labels. The proteomics profile analysis showed that around 10 % of the identified proteins were regulated and one fourth of them confirmed the gene expression changes seen by DNA microarray. Particularly interesting was the down regulation of the Silicon transporter 1 (SIT1), an enzyme that is responsible for the uptake of silica from the media into the cell of diatoms. Regulation of SIT1 upon BaP treatment was also confirmed at the gene expression level. Conclusions The potential use of the regulated proteins found in this study as early indicators of environmental exposure to PAHs is discussed. In particular, SIT1 is considered a promising biomarker and SIT1 expression changes were confirmed also when the diatoms were exposed to field samples, e.g. marine surface sediments contaminated by PAHs.JRC.DDG.H.5-Rural, water and ecosystem resource

    Challenges of developing decision-support LCA tools in the biopharmaceutical industry

    Get PDF
    The biopharmaceutical industry has been slow in carrying out LCA analyses. However, as the industry matures, the level of scrutiny placed on this industry by international governments will increase and hence, there is an urgent need for the industry to implement decision-support tools for the decision-making processes. Decision-support tools based on life cycle assessment (LCA) can be potentially used for application in the biopharmaceutical industry as an aid to decision making. This paper sets out the challenges associated with developing such decision-support LCA tools. This paper highlights that in order for the industry to overcome these challenges and successfully develop decision-support LCA tools, they require a broader understanding of the biopharmaceutical manufacturing processes and LCA methodology

    The environmental performance of protecting seedlings with plastic tree shelters for afforestation in temperate oceanic regions: A UK case study

    Get PDF
    Restoration of forested land represents an effective strategy to achieve net-zero target emissions by enhancing the removal of greenhouse gases from the atmosphere. The most common afforestation strategy envisages planting seedlings, which are germinated and grown to the desired age at tree nurseries, with plastic shelters to increase growth and survival of trees. This article presents a comprehensive Life Cycle Assessment (LCA) study that compares the environmental performance of current and prospective scenarios for shelter-aided seedling planting compared with a base case where shelters are not employed. The study focuses on the UK, but results and conclusions are valid for other temperate oceanic regions. The scenarios investigated are a combination of different shelters materials and end-of-life (EoL) strategies. Our analysis demonstrates that (i) planting seedling without shelters is the most preferable option across most environmental impact categories (including Climate Change), and in terms of weighted results, (ii) polypropylene shelters are preferable to bio-based alternatives, including polylactic acid-starch blends and bio-polypropylene, (iii) recycling is the most environmentally advantageous EoL treatment. Our study also showed that that the carbon emissions of the scenarios investigated are negligible when compared to the amount of carbon sequestered by a tree in 25 years

    Regulation of protein kinase C by extracellular calcium in bovine parathyroid cells.

    Full text link

    Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases (ERK)

    Get PDF
    An increase in the interaction between advanced glycation end-products (AGEs) and their receptor RAGE is believed to contribute to the pathogenesis of chronic complications of Diabetes mellitus, which can include bone alterations such as osteopenia. We have recently found that extracellular AGEs can directly regulate the growth and development of rat osteosarcoma UMR106 cells, and of mouse calvaria-derived MC3T3E1 osteoblasts throughout their successive developmental stages (proliferation, differentiation and mineralisation), possibly by the recognition of AGEs moieties by specific osteoblastic receptors which are present in both cell lines. In the present study we examined the possible expression of RAGE by UMR106 and MC3T3E1 osteoblastic cells, by immunoblot analysis. We also investigated whether short-, medium- or long-term exposure of osteoblasts to extracellular AGEs, could modify their affinity constant and maximal binding for AGEs (by 125I-AGE-BSA binding experiments), their expression of RAGE (by immunoblot analysis) and the activation status of the osteoblastic ERK 1/2 signal transduction mechanism (by immunoblot analysis for ERK and P-ERK). Our results show that both osteoblastic cell lines express readily detectable levels of RAGE. Short-term exposure of phenotypically mature osteoblastic UMR106 cells to AGEs decrease the cellular density of AGE-binding sites while increasing the affinity of these sites for AGEs. This culture condition also dose-dependently increased the expression of RAGE and the activation of ERK. In proliferating MC3T3E1 pre-osteoblasts, 24-72 h exposure to AGEs did not modify expression of RAGE, ERK activation or the cellular density of AGE-binding sites. However, it did change the affinity of these binding sites forAGEs, with both higher- and lower-affinity sites now being apparent. Medium-term ( 1 week) incubation of differentiated MC3T3E1 osteoblasts with AGEs, induced a simultaneous increase in RAGE expression and in the relative amount of P-ERK. Mineralising MC3T3E1 cultures grown for 3 weeks in the presence of extracellular AGEs showed a decrease both in RAGE and P-ERK expression. These results indicate that, in phenotypically mature osteoblastic cells, changes in ERK activation closely follow the AGEs-induced regulation of RAGE expression. Thus, the AGEs-induced biological effects that we have observed previously in osteoblasts, could be mediated by RAGE in the later stages of development, and mediated by other AGE receptors in the earlier pre-osteoblastic stage

    New insights into alterations in pl proteins affecting their binding to dna after exposure of mytilus galloprovincialis to mercury—a possible risk to sperm chromatin structure?

    Get PDF
    Mercury (Hg) is a highly toxic and widespread pollutant. We previously reported that the exposure of Mytilus galloprovincialis for 24 h to doses of HgCl2 similar to those found in seawater (range 1–100 pM) produced alterations in the properties of protamine-like (PL) proteins that rendered them unable to bind and protect DNA from oxidative damage. In the present work, to deepen our studies, we analyzed PL proteins by turbidimetry and fluorescence spectroscopy and performed salt-induced release analyses of these proteins from sperm nuclei after the exposure of mussels to HgCl2 at the same doses. Turbidity assays indicated that mercury, at these doses, induced PL protein aggre-gates, whereas fluorescence spectroscopy measurements showed mercury-induced conformational changes. Indeed, the mobility of the PLII band changed in sodium dodecyl sulphate-polyacrylamide gel electrophoresis, particularly after exposure to 10-pM HgCl2, confirming the mercury-induced structural rearrangement. Finally, exposure to HgCl2 at all doses produced alterations in PL-DNA binding, detectable by DNA absorption spectra after the PL protein addition and by a decreased release of PLII and PLIII from the sperm nuclei. In conclusion, in this paper, we reported Hg-induced PL protein alterations that could adversely affect mussel reproductive activity, providing an insight into the molecular mechanism of Hg-related infertility

    Morphological, Gene, and Hormonal Changes in Gonads and In-Creased Micrococcal Nuclease Accessibility of Sperm Chromatin Induced by Mercury

    Get PDF
    Mercury is one of the most dangerous environmental pollutants. In this work, we analysed the effects of exposure of Mytilus galloprovincialis to 1, 10 and 100 pM HgCl2 for 24 h on the gonadal morphology and on the expression level of three stress genes: mt10, hsp70 and πgst. In this tissue we also evaluated the level of steroidogenic enzymes 3β-HSD and 17β-HSD and the expression of PL protein genes. Finally, we determined difference in sperm chromatin accessibility to micrococcal nuclease. We found alterations in gonadal morphology especially after exposure to 10 and 100 pM HgCl2 and hypo-expression of the three stress genes, particularly for hsp70. Furthermore, decreased labelling with both 3β-HSD and 17β-HSD antibodies was observed following exposure to 1 and 10 pM HgCl2 and complete absence at 100 pM HgCl2 exposure. Gonads of mussels exposed to all HgCl2 doses showed decreased expression of PL protein genes especially for PLIII. Finally, micrococcal nuclease digestions showed that all doses of HgCl2 exposure resulted in increased sperm chromatin accessibility to this enzyme, indicative of improper sperm chromatin structure. All of these changes provide preliminary data of the potential toxicity of mercury on the reproductive health of this mussel

    Thermodynamic theory of epitaxial ferroelectric thin films with dense domain structures

    Full text link
    A Landau-Ginsburg-Devonshire-type nonlinear phenomenological theory is presented, which enables the thermodynamic description of dense laminar polydomain states in epitaxial ferroelectric thin films. The theory explicitly takes into account the mechanical substrate effect on the polarizations and lattice strains in dissimilar elastic domains (twins). Numerical calculations are performed for PbTiO3 and BaTiO3 films grown on (001)-oriented cubic substrates. The "misfit strain-temperature" phase diagrams are developed for these films, showing stability ranges of various possible polydomain and single-domain states. Three types of polarization instabilities are revealed for polydomain epitaxial ferroelectric films, which may lead to the formation of new polydomain states forbidden in bulk crystals. The total dielectric and piezoelectric small-signal responses of polydomain films are calculated, resulting from both the volume and domain-wall contributions. For BaTiO3 films, strong dielectric anomalies are predicted at room temperature near special values of the misfit strain.Comment: 19 pages, 8 figure

    Evaluación morfológica y funcional de la injuria renal inducida por doxorubicína

    Get PDF
    Doxorubicína (Adriamicina) es un antibiótico antraciclino citotóxico utilizado en la regresión de enfermedades neoplásicas diseminadas. Se une a los ácidos nucleicos, presumiblemente por una intercalación específica del núcleo antraciclino planar con el ADN de doble hélice y se caracteriza por inhibir el repliegue y la acción de las ADN polimerasas. Esta droga altera también la funcionalidad de las membranas celulares así como de las proteínas plasmáti­cas. Posee efecto citotóxico sobre células malignas, así como efectos tóxicos colaterales sobre diferentes órganos entre los que se destaca mielosupresión, cardio y nefrotoxicidad1,2. Se han desarrollado varios estudios de injuria renal inducida por Doxorubicína en modelos experimentales con el fin de elucidar su fisiopatología1,2. En general, muestran un periodo de estabilidad y luego desarrollan proteinuria, hipertensión arterial, elevación de la creatininemia. La biopsia renal evidencia glomérulos esclerosados y acumu­lación de material amorfo3,4. Estas alteraciones llevan a una disminución progresiva de la función renal5,6. La evolución hacia la fibrosis renal y la atrofia tubular son componentes inevitables de la patogénesis tubulointersticial que acom­paña a la toxicidad renal por Doxorubicína, como en la mayoría de las enfermedades renales progresivas.
    corecore