48 research outputs found

    Emission of nitrous acid from soil and biological soil crusts represents an important source of HONO in the remote atmosphere in Cyprus

    Get PDF
    Soil and biological soil crusts can emit nitrous acid (HONO) and nitric oxide (NO). The terrestrial ground surface in arid and semiarid regions is anticipated to play an important role in the local atmospheric HONO budget, deemed to represent one of the unaccounted-for HONO sources frequently observed in field studies. In this study HONO and NO emissions from a representative variety of soil and biological soil crust samples from the Mediterranean island Cyprus were investigated under controlled laboratory conditions. A wide range of fluxes was observed, ranging from 0.6 to 264 ng m−2 s−1 HONO-N at optimal soil water content (20–30 % of water holding capacity, WHC). Maximum NO-N fluxes at this WHC were lower (0.8–121 ng m−2 s−1). The highest emissions of both reactive nitrogen species were found from bare soil, followed by light and dark cyanobacteria-dominated biological soil crusts (biocrusts), correlating well with the sample nutrient levels (nitrite and nitrate). Extrapolations of lab-based HONO emission studies agree well with the unaccounted-for HONO source derived previously for the extensive CYPHEX field campaign, i.e., emissions from soil and biocrusts may essentially close the Cyprus HONO budget

    Tara Pacific Expedition\u27s atmospheric measurements of marine aerosols across the Atlantic and Pacific Oceans: Overview and preliminary results

    Get PDF
    Marine aerosols play a significant role in the global radiative budget, in clouds\u27 processes, and in the chemistry of the marine atmosphere. There is a critical need to better understand their production mechanisms, composition, chemical properties, and the contribution of ocean-derived biogenic matter to their mass and number concentration. Here we present an overview of a new dataset of in situ measurements of marine aerosols conducted over the 2.5-yr Tara Pacific Expedition over 110, 000 km across the Atlantic and Pacific Oceans. Preliminary results are presented here to describe the new dataset that will be built using this novel set of measurements. It will characterize marine aerosols properties in detail and will open a new window to study the marine aerosol link to the water properties and environmental conditions

    Ergosterol, arabitol and mannitol as tracers for biogenic aerosols in the eastern Mediterranean

    Get PDF
    Aerosols containing biological components can have a significant effect on human health by causing primarily irritation, infection and allergies. Specifically, airborne fungi can cause a wide array of adverse responses in humans depending on the type and quantity present. In this study we used chemical biomarkers for analyzing fungi-containing aerosols in the eastern Mediterranean region during the year 2009 in order to quantify annual fungal abundances. The prime marker for fungi used in this study was ergosterol, and its concentrations were compared with those of mannitol and arabitol which were recently suggested to also correlate with fungal spores concentrations (Bauer et al., 2008a). Back trajectory analysis, inorganic ions, humidity and temperature were used in an attempt to identify sources as well as the dependence on seasonal and environmental conditions. We found that the ambient concentrations of ergosterol, arabitol and mannitol range between 0 and 2.73 ng m<sup>−3</sup>, 1.85 and 58.27 ng m<sup>−3</sup>, 5.57 and 138.03 ng m<sup>−3</sup>, respectively. The highest levels for all biomarkers were during the autumn, probably from local terrestrial sources, as deduced from the inorganic ions and back trajectory analysis. Significant correlations were observed between arabitol and mannitol during the entire year except for the winter months. Both sugars correlated with ergosterol only during the spring and autumn. We conclude that mannitol and arabitol might not be specific biomarkers for fungi and that the observed correlations during spring and autumn may be attributed to high levels of vegetation during spring blossoms and autumn decomposing

    Air-sampled Filter Analysis for Endotoxins and DNA Content

    No full text
    Outdoor aerosol research commonly uses particulate matter sampled on filters. This procedure enables various characterizations of the collected particles to be performed in parallel. The purpose of the method presented here is to obtain a highly accurate and reliable analysis of the endotoxin and DNA content of bio-aerosols extracted from filters. The extraction of high molecular weight organic molecules, such as lipopolysaccharides, from sampled filters involves shaking the sample in a pyrogen-free water-based medium. The subsequent analysis is based on an enzymatic reaction that can be detected using a turbidimetric measurement. As a result of the high organic content on the sampled filters, the extraction of DNA from the samples is performed using a commercial DNA extraction kit that was originally designed for soils and modified to improve the DNA yield. The detection and quantification of specific microbial species using quantitative polymerase chain reaction (q-PCR) analysis are described and compared with other available methods

    The chemical and microphysical properties of secondary organic aerosols from Holm Oak emissions

    Get PDF
    The Mediterranean region is expected to experience substantial climatic change in the next 50 years. But, possible effects of climate change on biogenic volatile organic compound (VOC) emissions as well as on the formation of secondary organic aerosols (SOA) produced from these VOC are yet unexplored. To address such issues, the effects of temperature on the VOC emissions of Mediterranean Holm Oak and small Mediterranean stand of Wild Pistacio, Aleppo Pine, and Palestine Oak have been studied in the Julich plant aerosol atmosphere chamber. For Holm Oak the optical and microphysical properties of the resulting SOA were investigated.Monoterpenes dominated the VOC emissions from Holm Oak (97.5%) and Mediterranean stand (97%). Higher temperatures enhanced the overall VOC emission but with different ratios of the emitted species. The amount of SOA increased linearly with the emission strength with a fractional mass yield of 6.0+/-0.6%, independent of the detailed emission pattern. The investigated particles were highly scattering with no absorption abilities. Their average hygroscopic growth factor of 1.13+/-0.03 at 90% RH with a critical diameter of droplet activation was 100+/-4 nm at a supersaturation of 0.4%. All microphysical properties did not depend on the detailed emission pattern, in accordance with an invariant O/C ratio (0.57(+0.03/-0.1)) of the SOA observed by high resolution aerosol mass spectrometry.The increase of Holm oak emissions with temperature (approximate to 20% per degree) was stronger than e.g. for Boreal tree species (approximate to 10% per degree). The SOA yield for Mediterranean trees determined here is similar as for Boreal trees. Increasing mean temperature in Mediterranean areas could thus have a stronger impact on BVOC emissions and SOA formation than in areas with Boreal forests
    corecore