4,677 research outputs found

    Revealing structure and evolution within the corona of the Seyfert galaxy I Zw 1

    Get PDF
    X-ray spectral timing analysis is presented of XMM-Newton observations of the narrow line Seyfert 1 galaxy I Zwicky 1 (I Zw 1) taken in 2015 January. After exploring the effect of background flaring on timing analyses, X-ray time lags between the reflection-dominated 0.3-1.0keV energy and continuum-dominated 1.0-4.0keV band are measured, indicative of reverberation off the inner accretion disc. The reverberation lag time is seen to vary as a step function in frequency; across lower frequency components of the variability, 3e-4 to 1.2e-3Hz a lag of 160s is measured, but the lag shortens to (59 +/- 4)s above 1.2e-3Hz. The lag-energy spectrum reveals differing profiles between these ranges with a change in the dip showing the earliest arriving photons. The low frequency signal indicates reverberation of X-rays emitted from a corona extended at low height over the disc while at high frequencies, variability is generated in a collimated core of the corona through which luminosity fluctuations propagate upwards. Principal component analysis of the variability supports this interpretation, showing uncorrelated variation in the spectral slope of two power law continuum components. The distinct evolution of the two components of the corona is seen as a flare passes inwards from the extended to the collimated portion. An increase in variability in the extended corona was found preceding the initial increase in X-ray flux. Variability from the extended corona was seen to die away as the flare passed into the collimated core leading to a second sharper increase in the X-ray count rate.Comment: 18 pages, 11 figures. Accepted for publication in MNRA

    Universal zero-bias conductance for the single electron transistor. II: Comparison with numerical results

    Full text link
    A numerical renormalization-group survey of the zero-bias electrical conductance through a quantum dot embedded in the conduction path of a nanodevice is reported. The results are examined in the light of a recently derived linear mapping between the temperature-dependent conductance and the universal function describing the conductance for the symmetric Anderson model. A gate potential applied to the conduction electrons is known to change markedly the transport properties of a quantum dot side-coupled to the conduction path; in the embedded geometry here discussed, a similar potential is shown to affect only quantitatively the temperature dependence of the conductance. As expected, in the Kondo regime the numerical results are in excellent agreement with the mapped conductances. In the mixed-valence regime, the mapping describes accurately the low-temperature tail of the conductance. The mapping is shown to provide a unified view of conduction in the single-electron transistor.Comment: Sequel to arXiv:0906.4063. 9 pages with 8 figure

    EXPRESSION OF HUMAN PROTEIN C IN MAMMARY TISSUE OF TRANSGENIC MAMMALS

    Get PDF
    Recombinant protein C characterized by a high percentage of active protein can be obtained in the milk of transgenic mammals that incorporate DNAs according to the present invention. Transgenic mammals of the present invention are produced by introducing into developing embryos DNA that encodes protein C, such that the DNA is stably incorporated in the DNA of germ line cells of the mature mammals and inherited in normal, mendelian fashion

    Keldysh study of point-contact tunneling between superconductors

    Full text link
    We revisit the problem of point-contact tunnel junctions involving one-dimensional superconductors and present a simple scheme for computing the full current-voltage characteristics within the framework of the non-equilibrium Keldysh Green function formalism. We address the effects of different pairing symmetries combined with magnetic fields and finite temperatures at arbitrary bias voltages. We discuss extensively the importance of these results for present-day experiments. In particular, we propose ways of measuring the effects found when the two sides of the junction have dissimilar superconducting gaps and when the symmetry of the superconducting states is not the one of spin-singlet pairing. This last point is of relevance for the study of the superconducting state of certain organic materials like the Bechgaard salts and, to some extent, for ruthenium compounds.Comment: 10 pages, 4 figure

    Rotated stripe order and its competition with superconductivity in La1.88_{1.88}Sr0.12_{0.12}CuO4_4

    Get PDF
    We report the observation of a bulk charge modulation in La1.88_{1.88}Sr0.12_{0.12}CuO4_4 (LSCO) with a characteristic in-plane wave-vector of (0.236, ±δ\pm \delta), with δ\delta=0.011 r.l.u. The transverse shift of the ordering wave-vector indicates the presence of rotated charge-stripe ordering, demonstrating that the charge ordering is not pinned to the Cu-O bond direction. On cooling through the superconducting transition, we find an abrupt change in the growth of the charge correlations and a suppression of the charge order parameter indicating competition between the two orderings. Orthorhombic LSCO thus helps bridge the apparent disparities between the behavior previously observed in the tetragonal "214" cuprates and the orthorhombic yttrium and bismuth-based cuprates and thus lends strong support to the idea that there is a common motif to charge order in all cuprate families.Comment: 6 pages, 4 figue

    1H0707-495 in 2011: An X-ray source within a gravitational radius of the event horizon

    Get PDF
    The Narrow Line Seyfert 1 Galaxy 1H0707-495 went in to a low state from 2010 December to 2011 February, discovered by a monitoring campaign using the X-Ray Telescope on the Swift satellite. We triggered a 100 ks XMM-Newton observation of the source in 2011 January, revealing the source to have dropped by a factor of ten in the soft band, below 1 keV, and a factor of 2 at 5 keV, compared with a long observation in 2008. The sharp spectral drop in the source usually seen around 7 keV now extends to lower energies, below 6 keV in our frame. The 2011 spectrum is well fit by a relativistically-blurred reflection spectrum similar to that which fits the 2008 data, except that the emission is now concentrated solely to the central part of the accretion disc. The irradiating source must lie within 1 gravitational radius of the event horizon of the black hole, which spins rapidly. Alternative models are briefly considered but none has any simple physical interpretation.Comment: 9 pages, 19 figures, MNRAS in pres

    Magnetic excitations in stripe-ordered La1.875_{1.875}Ba0.125_{0.125}CuO4_4 studied using resonant inelastic x-ray scattering

    Full text link
    The charge and spin correlations in La1.875_{1.875}Ba0.125_{0.125}CuO4_4 (LBCO 1/8) are studied using Cu L3L_3 edge resonant inelastic x-ray scattering (RIXS). The static charge order (CO) is observed at a wavevector of (0.24,0)(0.24,0) and its charge nature confirmed by measuring the dependence of this peak on the incident x-ray polarization. The paramagnon excitation in LBCO 1/8 is then measured as it disperses through the CO wavevector. Within the experimental uncertainty no changes are observed in the paramagnon due to the static CO, and the paramagnon seems to be similar to that measured in other cuprates, which have no static CO. Given that the stripe correlation modulates both the charge and spin degrees of freedom, it is likely that subtle changes do occur in the paramagnon due to CO. Consequently, we propose that future RIXS measurements, realized with higher energy resolution and sensitivity, should be performed to test for these effects.Comment: 5 pages, 4 figure
    corecore