992 research outputs found

    Covr Regulates Streptococcus Mutans Susceptibility To Complement Immunity And Survival In Blood

    Get PDF
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Streptococcus mutans, a major pathogen of dental caries, may promote systemic infections after accessing the bloodstream from oral niches. In this study, we investigate pathways of complement immunity against S. mutans and show that the orphan regulator CovR (CovR(Sm)) modulates susceptibility to complement opsonization and survival in blood. S. mutans blood isolates showed reduced susceptibility to C3b deposition compared to oral isolates. Reduced expression of covRSm in blood strains was associated with increased transcription of CovR(Sm)-repressed genes required for S. mutans interactions with glucans (gbpC, gbpB, and epsC), sucrose-derived exopolysaccharides (EPS). Consistently, blood strains showed an increased capacity to bind glucan in vitro. Deletion of covR(Sm) in strain UA159 (UAcov) impaired C3b deposition and binding to serum IgG and C-reactive protein (CRP) as well as phagocytosis through C3b/iC3b receptors and killing by neutrophils. Opposite effects were observed in mutants of gbpC, epsC, or gtfBCD (required for glucan synthesis). C3b deposition on UA159 was abolished in C1q-depleted serum, implying that the classical pathway is essential for complement activation on S. mutans. Growth in sucrose-containing medium impaired the binding of C3b and IgG to UA159, UAcov, and blood isolates but had absent or reduced effects on C3b deposition in gtfBCD, gbpC, and epsC mutants. UAcov further showed increased ex vivo survival in human blood in an EPS-dependent way. Consistently, reduced survival was observed for the gbpC and epsC mutants. Finally, UAcov showed an increased ability to cause bacteremia in a rat model. These results reveal that CovRSm modulates systemic virulence by regulating functions affecting S. mutans susceptibility to complement opsonization.841132063219Japan Society for the Promotion of Science (JSPS) [15K11363]Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) (PNPD)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2009/50547-0, 2012/50996-6, 2015/12940-3, 2012/04222-5, 2015/07237-1]Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Sequence and structural features of binding site residues in protein-protein complexes: comparison with protein-nucleic acid complexes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-protein interactions are important for several cellular processes. Understanding the mechanism of protein-protein recognition and predicting the binding sites in protein-protein complexes are long standing goals in molecular and computational biology.</p> <p>Methods</p> <p>We have developed an energy based approach for identifying the binding site residues in protein–protein complexes. The binding site residues have been analyzed with sequence and structure based parameters such as binding propensity, neighboring residues in the vicinity of binding sites, conservation score and conformational switching.</p> <p>Results</p> <p>We observed that the binding propensities of amino acid residues are specific for protein-protein complexes. Further, typical dipeptides and tripeptides showed high preference for binding, which is unique to protein-protein complexes. Most of the binding site residues are highly conserved among homologous sequences. Our analysis showed that 7% of residues changed their conformations upon protein-protein complex formation and it is 9.2% and 6.6% in the binding and non-binding sites, respectively. Specifically, the residues Glu, Lys, Leu and Ser changed their conformation from coil to helix/strand and from helix to coil/strand. Leu, Ser, Thr and Val prefer to change their conformation from strand to coil/helix.</p> <p>Conclusions</p> <p>The results obtained in this study will be helpful for understanding and predicting the binding sites in protein-protein complexes.</p

    Multiorbital analysis of the effects of uniaxial and hydrostatic pressure on TcT_c in the single-layered cuprate superconductors

    Get PDF
    The origin of uniaxial and hydrostatic pressure effects on TcT_c in the single-layered cuprate superconductors is theoretically explored. A two-orbital model, derived from first principles and analyzed with the fluctuation exchange approximation gives axial-dependent pressure coefficients, Tc/Pa>0\partial T_c/\partial P_a>0, Tc/Pc<0\partial T_c/\partial P_c<0, with a hydrostatic response Tc/P>0\partial T_c/\partial P>0 for both La214 and Hg1201 cuprates, in qualitative agreement with experiments. Physically, this is shown to come from a unified picture in which higher TcT_c is achieved with an "orbital distillation", namely, the less the dx2y2d_{x^2-y^2} main band is hybridized with the dz2d_{z^2} and 4s4s orbitals higher the TcT_c. Some implications for obtaining higher TcT_c materials are discussed.Comment: 6pages, 4 figure

    Viscoelasticity of two-layer-vesicles in solution

    Full text link
    The dynamic shape relaxation of the two-layer-vesicle is calculated. In additional to the undulation relaxation where the two bilayers move in the same direction, the squeezing mode appears when the gap between the two bilayers is small. At large gap, the inner vesicle relaxes much faster, whereas the slow mode is mainly due to the outer layer relaxation. We have calculated the viscoelasticity of the dilute two-layer-vesicle suspension. It is found that for small gap, the applied shear drives the undulation mode strongly while the slow squeezing mode is not much excited. In this limit the complex viscosity is dominated by the fast mode contribution. On the other hand, the slow mode is strongly driven by shear for larger gap. We have determined the crossover gap which depends on the interaction between the two bilayers. For a series of samples where the gap is changed systematically, it is possible to observe the two amplitude switchings

    Potential of an Asymmetrical Agitation in Industrial Mixing

    Full text link
    Mixing is one of the most fundamental operations in chemical engineering. Stirred tanks are widely used in the manufacture of such materials as chemicals, paints, inks, electronics materials, ceramics, foods, pharmaceuticals and cosmetics. Suitable mixing is indispensable to the purpose achievement of a process. Eccentric mixing, in which an impeller installed at eccentric position in a vessel, is one of the traditional methods of promoting mixing. An asymmetrical flow which occurs in vessel is complicated, and it promotes mixing, distribution, and mass transfer. In this study, a new mixing method which eccentric mixing using a large type impeller which attracts attention in recent years is shown. The high performance of a large impeller can be combined with the advantages of an eccentric impeller by using the impeller at an eccentric position. The power consumption and mixing time for MAXBLEND, which is a type of large impeller, were investigated. The power consumption, P, and mixing time, θM, were measured under various eccentric conditions. The relation between the power number (Np) and Reynolds number (Re) and that between the dimensionless mixing time (nθM) and Re were investigated. When eccentric mixing is used industrially, we should be concerned about the horizontal load to a agitating shaft. The large oscillating horizontal load causes serious problems, such as the falling off of the impeller or the breakage of the motor, mechanical seal or gearbox. It is, therefore, important to understand the relation between these values and the impeller rotational speed when designing the mixing equipment and determining the operating conditions. In this study, the torque and horizontal load were measured in eccentric mixing under various eccentric conditions. The averages of both, the torque and the horizontal load, and their standard deviations, corresponding to the amplitude of fluctuation, were shown.Doi: 10.12777/ijse.5.2.73-80 [How to cite this article: Nishi, K., Enya, N., Sonoda, K., Misumi, R., Kaminoyama, M. (2013). Potential of an asymmetrical agitation in industrial mixing. International Journal of Science and Engineering, 5(2),73-80. Doi: 10.12777/ijse.5.2.73-80

    An electron correlation originated negative magnetoresistance in a system having a partly flat band

    Full text link
    Inspired from an experimentally examined organic conductor, a novel mechanism for negative magnetoresistance is proposed for repulsively interacting electrons on a lattice whose band dispersion contains a flat portion (a flat bottom below a dispersive part here). When the Fermi level lies in the flat part, the electron correlation should cause ferromagnetic spin fluctuations to develop with an enhanced susceptibility. A relatively small magnetic field will then shift the majority-spin Fermi level to the dispersive part, resulting in a negative magnetoresistance. We have actually confirmed the idea by calculating the conductivity in magnetic fields, with the fluctuation exchange approximation, for the repulsive Hubbard model on a square lattice having a large second nearest-neighbor hopping.Comment: RevTex, 5 figures in Postscript, to be published in Phys. Rev.

    Detection of pairing correlation in the two-dimensional Hubbard model

    Full text link
    Quantum Monte Carlo method is used to re-examine superconductivity in the single-band Hubbard model in two dimensions. Instead of the conventional pairing, we consider a `correlated pairing', \langle \tilde{c}_{i\uparrow} \tilde{c}_{i'\downarrow} %\tilde{c}_{j'\downarrow}^\dagger \tilde{c}_{j \uparrow}^\dagger \rangle with c~iσciσ(1niσ)\tilde{c}_{i\sigma} \equiv c_{i\sigma}(1-n_{i-\sigma}), which is inferred from the tt-JJ model, the strong-coupling limit of the Hubbard model. The pairing in the dd-wave channel is found to possess both a divergence like 1/T1/T in the pairing susceptibility and a growth of the ground-state pairing correlation with sample size, indicating an off-diagonal long-range order near (but not exactly at) half-filling.Comment: 3 pages, revtex, 6 figures available on request from [email protected]

    Movements and activities of male black-tailed gulls in breeding and sabbatical years

    Get PDF
    Long-lived animals sometimes skip one or more breeding seasons; however, little is known about their movements and activities during such ‘sabbatical’ periods. Here we present novel data on year-round movements and activities of two male black-tailed gulls Larus crassirostris during a sabbatical year. We compare the data with those in a year when they bred and with those of two other breeding males. The year-round migration routes of two sabbatical males were consistent with those of the breeding males: they returned to the breeding area but did not visit the colony in the sabbatical year. They landed more frequently on water (a potential index of foraging effort) during the non-breeding autumn and winter prior to the sabbatical year than before breeding. Sabbatical gulls may forage more intensively to recover body condition immediately after breeding
    corecore