440 research outputs found

    Large Solar Neutrino Mixing in an Extended Zee Model

    Full text link
    The Zee model, which employs the standard Higgs scalar (ϕ\phi) with its duplicate (ϕ′\phi^\prime) and a singly charged scalar (h+h^+), can utilize two global symmetries associated with the conservation of the numbers of ϕ\phi and ϕ′\phi^\prime, Nϕ,ϕ′N_{\phi,\phi^\prime}, where Nϕ+Nϕ′N_\phi+N_{\phi^\prime} coincides with the hypercharge while Nϕ−Nϕ′N_\phi-N_{\phi^\prime} (≡X\equiv X) is a new conserved charge, which is identical to Le−Lμ−LτL_e-L_\mu-L_\tau for the left-handed leptons. Charged leptons turn out to have ee-μ\mu and ee-τ\tau mixing masses, which are found to be crucial for the large solar neutrino mixing. In an extended version of the Zee model with an extra triplet Higgs scalar (s), neutrino oscillations are described by three steps: 1) the maximal atmospheric mixing is induced by democratic mass terms supplied by ss with XX=2 that can initiate the type II seesaw mechanism for the smallness of these masses; 2) the maximal solar neutrino mixing is triggered by the creation of radiative masses by h+h^+ with XX = 0; 3) the large solar neutrino mixing is finally induced by a νμ\nu_\mu-ντ\nu_\tau mixing arising from the rotation of the radiative mass terms as a result of the diagonalization that converts ee-μ\mu and ee-τ\tau mixing masses into the electron mass.Comment: RevTex, 10 pages including one figure page, to be published in Int. J. Mod. Phys. A (2002

    Singly charged higgses at linear collider

    Get PDF
    We consider the production of singly charged Higgs bosons in the Higgs triplet and two Higgs doublet models. We evaluate the cross sections for the pair production and the single production of charged higgses at linear collider. The decay modes of H+H^+ and the Standard Model backgrounds are considered. We analyze the possibilities to differentiate between triplet and two Higgs doublet models.Comment: 22 pages 9 figure

    Phenomenology of Higgs bosons in the Zee-Model

    Get PDF
    To generate small neutrino masses radiatively, the Zee-model introduces two Higgs doublets and one weak-singlet charged Higgs boson to its Higgs sector. From analyzing the renormalization group equations, we determine the possibile range of the lightest CP-even Higgs boson (hh) mass and the Higgs boson self-couplings as a function of the cut-off scale beyond which either some of the coupling constants are strong enough to invalidate the perturbative analysis or the stability of the electroweak vacuum is no longer guaranteed. Using the results obtained from the above analysis, we find that the singlet charged Higgs boson can significantly modify the partial decay width of h→γγh \to \gamma \gamma via radiative corrections, and its collider phenomenology can also be drastically different from that of the charged Higgs bosons in the usual two-Higgs-doublet models.Comment: Added a paragraph and a figure in Section V, corrected typos, added references. (RevTeX, 45 pages, 16 figures included.) To appear in Physical Review

    Decoupling property of the supersymmetric Higgs sector with four doublets

    Full text link
    In supersymmetric standard models with multi Higgs doublet fields, selfcoupling constants in the Higgs potential come only from the D-terms at the tree level. We investigate the decoupling property of additional two heavier Higgs doublet fields in the supersymmetric standard model with four Higgs doublets. In particular, we study how they can modify the predictions on the quantities well predicted in the minimal supersymmetric standard model (MSSM), when the extra doublet fields are rather heavy to be measured at collider experiments. The B-term mixing between these extra heavy Higgs bosons and the relatively light MSSM-like Higgs bosons can significantly change the predictions in the MSSM such as on the masses of MSSM-like Higgs bosons as well as the mixing angle for the two light CP-even scalar states. We first give formulae for deviations in the observables of the MSSM in the decoupling region for the extra two doublet fields. We then examine possible deviations in the Higgs sector numerically, and discuss their phenomenological implications.Comment: 26 pages, 24 figures, text sligtly modified,version to appear in Journal of High Energy Physic

    Multi-Scalar-Singlet Extension of the Standard Model - the Case for Dark Matter and an Invisible Higgs Boson

    Full text link
    We consider a simple extension of the Standard Model by the addition of N real scalar gauge singlets \vp that are candidates for Dark Matter. By collecting theoretical and experimental constraints we determine the space of allowed parameters of the model. The possibility of ameliorating the little hierarchy problem within the multi-singlet model is discussed. The Spergel-Steinhardt solution of the Dark Matter density cusp problem is revisited. It is shown that fitting the recent CRESST-II data for Dark Matter nucleus scattering implies that the standard Higgs boson decays predominantly into pairs of Dark Matter scalars. It that case discovery of the Higgs boson at LHC and Tevatron is impossible. The most likely mass of the dark scalars is in the range 15 GeV \lsim \mvp \lsim 50 GeV with BR(h \to \vp\vp) up to 96%.Comment: 18 pages, 15 figure

    Thermodynamic properties of spontaneous magnetization in Chern-Simons QED_3

    Get PDF
    The spontaneous magnetization in Chern-Simons QED_3 is discussed in a finite temperature system. The thermodynamical potential is analyzed within the weak field approximation and in the fermion massless limit. We find that there is a linear term with respect to the magnetic field with a negative coefficient at any finite temperature. This implies that the spontaneous magnetic field does not vanish even at high temperature. In addition, we examine the photon spectrum in the system. We find that the bare Chern-Simons coefficient is cancelled by the radiative effects. The photons then become topologically massless according to the magnetization, though they are massive by finite temperature effects. Thus the magnetic field is a long-range force without the screening even at high temperature.Comment: 32 pages, Latex, 4 eps figure

    Gauge-independent MS‾\overline{MS} renormalization in the 2HDM

    Get PDF
    We present a consistent renormalization scheme for the CP-conserving Two-Higgs-Doublet Model based on MS‾\overline{MS} renormalization of the mixing angles and the soft-Z2Z_2-symmetry-breaking scale MsbM_{sb} in the Higgs sector. This scheme requires to treat tadpoles fully consistently in all steps of the calculation in order to provide gauge-independent SS-matrix elements. We show how bare physical parameters have to be defined and verify the gauge independence of physical quantities by explicit calculations in a general RξR_{\xi}-gauge. The procedure is straightforward and applicable to other models with extended Higgs sectors. In contrast to the proposed scheme, the MS‾\overline{MS} renormalization of the mixing angles combined with popular on-shell renormalization schemes gives rise to gauge-dependent results already at the one-loop level. We present explicit results for electroweak NLO corrections to selected processes in the appropriately renormalized Two-Higgs-Doublet Model and in particular discuss their scale dependence.Comment: 52 pages, PDFLaTeX, PDF figures, JHEP version with Eq. (5.23) correcte

    Dark matter wants Linear Collider

    Get PDF
    One of the main purposes of physics at the International Linear Collider (ILC) is to study the property of dark matter such as its mass, spin, quantum numbers, and interactions with particles of the standard model. We discuss how the property can or cannot be investigated at the ILC using two typical cases of dark matter scenario: i) most of new particles predicted in physics beyond the standard model are heavy and only dark matter is accessible at the ILC, and ii) not only dark matter but also other new particles are accessible at the ILC. We find that, as can be easily imagined, dark matter can be detected without any difficulties in the latter case. In the former case, it is still possible to detect dark matter when the mass of dark matter is less than a half mass of the higgs boson
    • …
    corecore