42 research outputs found

    Supporting Spatial Management of Data-Poor, Small-Scale Fisheries With a Bayesian Approach

    Get PDF
    Marine conservation areas are an important tool for the sustainable management of multispecies, small-scale fisheries. Effective spatial management requires a proper understanding of the spatial distribution of target species and the identification of its environmental drivers. Small-scale fisheries, however, often face scarcity and low-quality of data. In these situations, approaches for the prioritization of conservation areas need to deal with scattered, biased, and short-term information and ideally should quantify data- and model-specific uncertainties for a better understanding of the risks related to management interventions. We used a Bayesian hierarchical species distribution modeling approach on annual landing data of the heavily exploited, small-scale, and data-poor fishery of Chwaka Bay (Zanzibar) in the Western Indian Ocean to understand the distribution of the key target species and identify potential areas for conservation. Few commonalities were found in the set of important habitat and environmental drivers among species, but temperature, depth, and seagrass cover affected the spatial distribution of three of the six analyzed species. A comparison of our results with information from ecological studies suggests that our approach predicts the distribution of the analyzed species reasonably well. Furthermore, the two main common areas of high relative abundance identified in our study have been previously suggested by the local fisher as important areas for spatial conservation. By using short-term, catch per unit of effort data in a Bayesian hierarchical framework, we quantify the associated uncertainties while accounting for spatial dependencies. More importantly, the use of accessible and interpretable tools, such as the here created spatial maps, can frame a better understanding of spatio-temporal management for local fishers. Our approach, thus, supports the operability of spatial management in small-scale fisheries suffering from a general lack of long-term fisheries information and fisheries independent data.En prens

    Improving bycatch mitigation measures for marine megafauna in Zanzibar, Tanzania

    Get PDF
    This study was conducted to explore the governance processes and socio-economic factors relevant to the potential implementation of bycatch mitigation for various vulnerable marine megafauna (rays, sharks, marine mammals and turtles) in Zanzibar, Tanzania. Questionnaire-based interviews were conducted between February and April 2017 with fishers (n= 240) at eight landing sites. One focus group discussion was held in each site and eleven key informant interviews were carried out. The study showed that current measures to manage bycatch rates are not explicit; no rules govern rays and sharks bycatch; and rules regarding marine mammal and sea turtle bycatch are poorly enforced. Binary logistic regression was used to determine the effect of five selected socio-economic factors (education, age, proportional fishing income, fishing experience, and the number of adults who bring income into the household) on the willingness of fishers to participate in potential future bycatch mitigation measures for marine megafauna. The results indicate that only one factor (the number of adults who bring income into the household) had any significant effect (p=0.016). These findings could benefit the future governance and management of marine megafauna in Zanzibar through a better understanding of what mitigation measures are more likely to be supported

    Linking extinction risk to the economic and nutritional value of sharks in small-scale fisheries

    Get PDF
    To achieve sustainable shark fisheries, it is key to understand not only the biological drivers and environmental consequences of overfishing, but also the social and economic drivers of fisher behavior. The extinction risk of sharks is highest in coastal tropical waters, where small-scale fisheries are most prevalent. Small-scale fisheries provide a critical source of economic and nutritional security to coastal communities, and these fishers are among the most vulnerable social and economic groups. We used Kenya’s and Zanzibar’s smallscale shark fisheries, which are illustrative of the many data-poor, small-scale shark fisheries worldwide, as case studies to explore the relationship between extinction risk and the economic and nutritional value of sharks. To achieve this, we combined existing data on shark landings, extinction risk, and nutritional value with sales data at 16 key landing sites and information from interviews with 476 fishers. Shark fisheries were an important source of economic and nutritional security, valued at >US$4 million annually and providing enough nutrition for tens of thousands of people. Economically and nutritionally, catches were dominated by threatened species (72.7% and 64.6–89.7%, respectively). The most economically valuable species were large and slow to reproduce (e.g. mobulid rays, wedgefish, and bull, silky, and mako sharks) and therefore more likely to be threatened with extinction. Given the financial incentive and intensive fishing pressure, small-scale fisheries are undoubtedly major contributors to the decline of threatened coastal shark species. In the absence of effective fisheries management and enforcement, we argue that within smallscale fisheries the conditions exist for an economically incentivized feedback loop in which vulnerable fishers are driven to persistently overfish vulnerable and declining shark species. To protect these species from extinction, this feedback loop must be broken

    Marine megafauna catch in southwestern Indian Ocean small-scale fisheries from landings data

    Get PDF
    The measurable impacts of small-scale fisheries on coastal marine ecosystems and vulnerable megafauna species (elasmobranchs, marine mammals and sea turtles) within them are largely unknown, particularly in developing countries. This study assesses megafauna catch and composition in handline, longline, bottom-set and drift gillnet fisheries of the southwestern Indian Ocean. Observers monitored 21 landing sites across Kenya, Zanzibar and northern Madagascar for 12 months in 2016–17. Landings (n = 4666) identified 59 species, including three sea turtles, two small cetaceans and one sirenian (Dugong dugon). Primary gear threats to investigated taxa were identified as bottom-set gillnets (marine mammals, sea turtles and batoids), drift gillnets (marine mammals, batoids and sharks) and longlines (sharks). Overall, catch was dominated by small and moderately sized coastal requiem sharks (Carcharhiniformes) and whiprays (Dasyatidae). Larger coastal and oceanic elasmobranchs were also recorded in substantial numbers as were a number of deeper-water species. The diversity of catch demonstrates the potential for small-scale fisheries to have impacts across a number of ecosystems. From the observed catch rates we calculated annual regional elasmobranch landings to be 35,445 (95%CI 30,478–40,412) tonnes, 72.6% more than officially reported in 2016 and 129.2% more than the 10-year average (2006–16), constituting 2.48 (95%CI 2.20–2.66) million individuals. Productivity-Susceptibility Analyses indicate that small and moderately sized elasmobranchs are most vulnerable in the small-scale fisheries. The study demonstrates substantial underreporting of catches in small-scale fisheries and highlights the need to expand efforts globally to assess the extent and impact of small-scale fisheries on vulnerable marine species and their respective ecosystems

    Macroalgal meadow habitats support fish and fisheries in diverse tropical seascapes

    Get PDF
    Ecosystems are linked by the movement of organisms across habitat boundaries and the arrangement of habitat patches can affect species abundance and composition. In tropical seascapes many coral reef fishes settle in adjacent habitats and undergo onto-genetic habitat shifts to coral reefs as they grow. Few studies have attempted to measure at what distances from nursery habitats these fish migrations (connectivity) cease to exist and how the abundance, biomass and proportion of nursery species change on coral reefs along distance gradients away from nursery areas. The present study examines seascape spatial arrangement, including distances between habitats, and its con-sequences on connectivity within a tropical seascape in Mozambique using a seascape ecology approach. Fish and habitat surveys were undertaken in 2016/2017 and a thematic habitat map was created in ArcGIS, where cover and distances between habitat patches were calculated. Distance to mangroves and seagrasses were significant predictors for abundance and biomass of most nursery species. The proportions of nursery species were highest in the south of the archipelago, where mangroves were present and decreased with distance to nurseries (mangroves and seagrasses). Some nursery species were absent on reef sites farthest from nursery habitats, at 80 km from mangroves and at 12 km from seagrass habitats. The proportion of nursery/non-nursery snapper and parrotfish species, as well as abundance and biomass of seagrass nursery species abruptly declined at 8 km from seagrass habitats, indicating a threshold distance at which migrations may cease. Additionally, reefs isolated by large stretches of sand and deep water had very low abundances of several nursery species despite being within moderate distances from nursery habitats. This highlights the importance of considering the matrix (sand and deep water) as barriers for fish migration

    Thresholds in seascape connectivity: the spatial arrangement of nursery habitats structure fish communities on nearby reefs

    Get PDF
    Ecosystems are linked by the movement of organisms across habitat boundaries and the arrangement of habitat patches can affect species abundance and composition. In tropical seascapes many coral reef fishes settle in adjacent habitats and undergo ontogenetic habitat shifts to coral reefs as they grow. Few studies have attempted to measure at what distances from nursery habitats these fish migrations (connectivity) cease to exist and how the abundance, biomass and proportion of nursery species change on coral reefs along distance gradients away from nursery areas. The present study examines seascape spatial arrangement, including distances between habitats, and its consequences on connectivity within a tropical seascape in Mozambique using a seascape ecology approach. Fish and habitat surveys were undertaken in 2016/2017 and a thematic habitat map was created in ArcGIS, where cover and distances between habitat patches were calculated. Distance to mangroves and seagrasses were significant predictors for abundance and biomass of most nursery species. The proportions of nursery species were highest in the south of the archipelago, where mangroves were present and decreased with distance to nurseries (mangroves and seagrasses). Some nursery species were absent on reef sites farthest from nursery habitats, at 80 km from mangroves and at 12 km from seagrass habitats. The proportion of nursery/non-nursery snapper and parrotfish species, as well as abundance and biomass of seagrass nursery species abruptly declined at 8 km from seagrass habitats, indicating a threshold distance at which migrations may cease. Additionally, reefs isolated by large stretches of sand and deep water had very low abundances of several nursery species despite being within moderate distances from nursery habitats. This highlights the importance of considering the matrix (sand and deep water) as barriers for fish migration

    Marine megafauna interactions with small-scale fisheries in the southwestern Indian Ocean: a review of status and challenges for research and management

    Get PDF
    In developing regions, coastal communities are particularly dependent on small-scale fisheries for food security and income. However, information on the scale and impacts of small-scale fisheries on coastal marine ecosystems are frequently lacking. Large marine vertebrates (marine mammals, sea turtles and chondrichthyans) are often among the first species to experience declines due to fisheries. This paper reviews the interactions between small-scale fisheries and vulnerable marine megafauna in the southwestern Indian Ocean. We highlight an urgent need for proper documentation, monitoring and assessment at the regional level of small-scale fisheries and the megafauna affected by them to inform evidence-based fisheries management. Catch and landings data are generally of poor quality and resolution with compositional data, where available, mostly anecdotal or heavily biased towards easily identifiable species. There is also limited understanding of fisheries effort, most of which relies on metrics unsuitable for proper assessment. Management strategies (where they exist) are often created without strong evidence bases or understanding of the reliance of fishers on resources. Consequently, it is not possible to effectively assess the current status and ensure the sustainability of these species groups; with indications of overexploitation in several areas. To address these issues, a regionally collaborative approach between government and non-governmental organisations, independent researchers and institutions, and small-scale fisheries stakeholders is required. In combination with good governance practices, appropriate and effective, evidence-based management can be formulated to sustain these resources, the marine ecosystems they are intrinsically linked to and the livelihoods of coastal communities that are tied to them

    Diversity Partitioning of Stony Corals Across Multiple Spatial Scales Around Zanzibar Island, Tanzania

    Get PDF
    The coral reefs of Zanzibar Island (Unguja, Tanzania) encompass a considerable proportion of the global coral-reef diversity and are representative of the western Indian Ocean region. Unfortunately, these reefs have been recently subjected to local and regional disturbances. The objectives of this study were to determine whether there are potentially non-random processes forcing the observed coral diversity patterns, and highlight where and at which spatial scales these processes might be most influential.A hierarchical (nested) sampling design was employed across three spatial scales, ranging from transects (<or=20 m), stations (<100 m), to sites (<1000 m), to examine coral diversity patterns. Two of the four sites, Chumbe and Mnemba, were located within Marine Protected Areas (MPAs), while the other two sites, Changuu and Bawe, were not protected. Additive partitioning of coral diversity was used to separate regional (total) diversity (gamma) into local alpha diversity and among-sample beta diversity components. Individual-based null models were used to identify deviations from random distribution across the three spatial scales. We found that Chumbe and Mnemba had similar diversity components to those predicted by the null models. However, the diversity at Changuu and Bawe was lower than expected at all three spatial scales tested. Consequently, the relative contribution of the among-site diversity component was significantly greater than expected. Applying partitioning analysis for each site separately revealed that the within-transect diversity component in Changuu was significantly lower than the null expectation.The non-random outcome of the partitioning analyses helped to identify the among-sites scale (i.e., 10's of kilometers) and the within-transects scale (i.e., a few meters; especially at Changuu) as spatial boundaries within which to examine the processes that may interact and disproportionately differentiate coral diversity. In light of coral community compositions and diversity patterns we strongly recommend that Bawe be declared a MPA
    corecore