67 research outputs found
Resistive flow in a weakly interacting Bose-Einstein condensate
We report the direct observation of resistive flow through a weak link in a
weakly interacting atomic Bose-Einstein condensate. Two weak links separate our
ring-shaped superfluid atomtronic circuit into two distinct regions, a source
and a drain. Motion of these weak links allows for creation of controlled flow
between the source and the drain. At a critical value of the weak link
velocity, we observe a transition from superfluid flow to superfluid plus
resistive flow. Working in the hydrodynamic limit, we observe a conductivity
that is 4 orders of magnitude larger than previously reported conductivities
for a Bose-Einstein condensate with a tunnel junction. Good agreement with
zero-temperature Gross-Pitaevskii simulations and a phenomenological model
based on phase slips indicate that the creation of excitations plays an
important role in the resulting conductivity. Our measurements of resistive
flow elucidate the microscopic origin of the dissipation and pave the way for
more complex atomtronic devices.Comment: Version published in PR
Blood Lactate Levels and the Effects of Recovery Methods on Repeated Sprint Performance
Please refer to the pdf version of the abstract located adjacent to the title
Third International Conference on Applications of Optics and Photonics
Organic semiconductor rubrene (C42H28) belongs to most preferred spintronic materials because of the high charge carrier mobility up to 40 cm(2)(V.s)(-1). However, the fabrication of a defect-free, polycrystalline rubrene for spintronic applications represents a difficult task. We report preparation and properties of rubrene thin films deposited by pulsed laser evaporation of solidified solutions. Samples of rubrene dissolved in aromatic solvents toluene, xylene, dichloromethane and 1,1-dichloroethane (0.23-1% wt) were cooled to temperatures in the range of 16.5-163 K and served as targets. The target ablation was provided by a pulsed 1064 nm or 266 nm laser. For films of thickness up to 100 nm deposited on Si, glass and ITO glass substrates, the Raman and AFM data show presence of the mixed crystalline and amorphous rubrene phases. Agglomerates of rubrene crystals are revealed by SEM observation too, and presence of oxide/peroxide (C42H28O2) in the films is concluded from matrix-assisted laser desorption/ionization time-offlight spectroscopic analysis
Telomerase promoter mutations in cancer: an emerging molecular biomarker?
João Vinagre, Vasco Pinto and Ricardo Celestino contributed equally to
the manuscript.Cell immortalization has been considered for a long time as a classic hallmark of cancer cells. Besides telomerase reactivation, such immortalization could be due to telomere maintenance through the “alternative mechanism of telomere lengthening” (ALT) but the mechanisms underlying both forms of reactivation remained elusive. Mutations in the coding region of telomerase gene are very rare in the cancer setting, despite being associated with some degenerative diseases. Recently, mutations in telomerase (TERT) gene promoter were found in sporadic and familial melanoma and subsequently in several cancer models, notably in gliomas, thyroid cancer and bladder cancer. The importance of these findings has been reinforced by the association of TERT mutations in some cancer types with tumour aggressiveness and patient survival. In the first part of this review, we summarize the data on the biology of telomeres and telomerase, available methodological approaches and non-neoplastic diseases associated with telomere dysfunction. In the second part, we review the information on telomerase expression and genetic alterations in the most relevant types of cancer (skin, thyroid, bladder and central nervous system) on record, and discuss the value of telomerase as a new biomarker with impact on the prognosis and survival of the patients and as a putative therapeutic target
Potencijalna upotreba izotopa važnih za okoliš u ispitivanju migracije onečišćujućih tvari
This article presents the use of natural abundance stable isotope (hydrogen, carbon, nitrogen, oxygen, chlorine) analysis data as a tool for providing important information about the origin of contaminants, the contribution of different sources to a multi-source plume, characterisation of their complex transport (rate and mechanisms) and for evaluating the success of contaminated site remediation. Isotopic signatures of contaminants are useful tracers of their sources, while isotopic fractionation can be used to quantitatively assess the progress of an environmental process such as biodegradation. This new isotopic approach is reliable and can offer more information than traditional techniques in pollutant migration studies, particularly after waste disposal. During biological degradation of any organic compound, molecules containing lighter isotopes are degraded, and the portion of heavier isotopes in the substrate is increased, identifying specific microbial roles in biogeochemical cycling. Since isotopic fractionation is proportional to degradation, depending on the type of contamination, a microbial degradation of 50 % to 99 % of the initial concentration can be quantified using isotope ratio measurements.Cilj ovog rada je da se prikaže korištenje podataka analize prirodne obilnosti stabilnih izotopa (vodika, ugljika, dušika, kisika i klora) kao alata za dobivanje važnih informacija o porijeklu onečišćujućih tvari, doprinosu različitih multikomponentnih onečišćivača, karakterizaciji njihova kompleksnog transporta (brzine i mehanizma) i praćenja uspjeha remedijacije onečišćenih mjesta. Izotopski sadržaji onečišćujućih tvari koriste se kao traseri za određivanje njihovih izvora, dok se izotopsko frakcioniranje može iskoristiti za kvantitativnu procjenu toka procesa kao što je biodegradacija. Takav nov izotopski pristup je pouzdan i nudi više informacija od tradicionalnih tehnika kontrole putovanja onečišćivala, napose nakon odlaganja opasnog otpada na zemljištu. Za vrijeme biodegradacije nekog organskog spoje molekule koje sadržavaju lake izotope lakše se degradiraju, a dio težih izotopa u supstratu se povećava, što upućuje na mikrobiološku ulogu u biokemijskom ciklusu. Kako je izotopsko frakcioniranje proporcionalno degradaciji zavisno od tipa onečišćenja, korištenjem podataka mjerenja izotopskih odnosa može se procijeniti mikrobiološka degradacija od 50 % do 99 % od početne koncentracije
Recommended from our members
Pyrohydrolysis-IRMS determination of silicate chlorine stable isotope compositions. Application to oceanic crust and meteorite samples
This contribution describes the optimization of chlorine extraction from silicate samples by pyrohydrolysis prior to the precise determination of Cl stable-isotope compositions (637 Cl) by gas source, dual inlet Isotope Ratio Mass Spectrometry (IRMS) on CH(3)Clg. The complete method was checked on three international reference materials for Cl-content and two laboratory glass standards. Whole procedure blanks are lower than 0. 5 mu mol, corresponding to less than 10 wt.% of most of the sample chloride analysed. In the absence of international chlorine isotope rock, we report here Cl extracted compared to accepted Cl contents and reproducibilities on Cl and delta Cl-37 measurements for the standard rocks. After extraction, the Cl contents of the three international references compared within error with the accepted values (mean yield = 94 +/-10%) with reproducibilities better than 12% (10). The laboratory glass standards - andesite SO100DS92 and phonolite S9(2) - were used specifically to test the effect of chloride amount on the measurements. They gave Cl extraction yields of 100 +/-6% (1 sigma-; n = 15) and 105 +/- 8% (1 sigma-; n = 7), respectively, with delta Cl-37 values of -0.51 0.14%o and -0.39 0.17%o (1g). In summary, for silicate samples with Cl contents between 39 and 9042 ppm, the Pyrohydrolysis/HPLC method leads to overall CI extraction yields of 100 8%, reproducibilities on Cl contents of 7% and on delta Cl-37 measurements of 0.12%o (all 1 sigma). The method was further applied to ten silicate rocks of various mineralogy and chemistry (meteorite, fresh MORB glasses, altered basalts and setpentinized peridotites) chosen for their large range of Cl contents (70-2156 ppm) and their geological significance. delta Cl-37 values range between -2.33 and -0.50%o. These strictly negative values contrast with the large range and mainly positive values previously reported for comparable silicate samples and shown here to be affected by analytical problems. Thus we propose a preliminary, revised terrestrial CI cycle, mainly dominated by negative and zero delta Cl-37 values. (C) 2007 Elsevier B.V. All rights reserved
Recommended from our members
The chlorine isotope composition of Earth's mantle
Chlorine stable isotope compositions ( delta Cl-37) of 22 mid- ocean ridge basalts ( MORBs) correlate with Cl content. The high-delta Cl-37, Cl- rich basalts are highly contaminated by Cl- rich materials ( seawater, brines, or altered rocks). The low-delta(37) Cl, Cl- poor basalts approach the composition of uncontaminated, mantle- derived magmas. Thus, most or all oceanic lavas are contaminated to some extent during their emplacement. MORB- source mantle has delta(37) Cl <= -1.6 per mil (%), which is significantly lower than that of surface reservoirs (similar to 0 parts per thousand not equal). This isotopic difference between the surface and deep Earth results from net Cl isotopic fractionation ( associated with removal of Cl from the mantle and its return by subduction over Earth history) and/ or the addition ( to external reservoirs) of a late volatile supply that is Cl-37- enriched
- …