131 research outputs found

    Terrorist attacks against sports venues: Emerging trends and characteristics spanning 50 years

    Get PDF
    INTRODUCTION: Sports venues foster community and support local economies. Due to their capacity to host hundreds to thousands of spectators, sports venues are vulnerable to becoming targets of terrorism. Types of venues targeted, regional trends, and methods of attack employed world-wide have not been well-described. METHODS: A search of the Global Terrorism Database (GTD) was conducted from 1970 through the end of 2019. Pre-coded variables for target type business and target subtype entertainment/cultural/stadium/casino were used to identify attacks involving venues where sports events might be viewed by spectators as part of an audience. Sports venues were specifically identified using the search terms sport, stadium, arena, and ring, as well as mention of any specific sport. Two authors then manually reviewed each entry for specific information to confirm appropriateness for inclusion, selecting preferentially for attacks against venues where watching a sports event was the primary focus for the majority of the attendees. Descriptive statistics were performed using R (3.6.1). RESULTS: Seventy-four (74) terrorist attacks targeting sports venues were identified from January 1, 1970 through December 31, 2019. Thirty-three (33) attacks, or 44.6% of attacks, involved soccer stadiums or soccer venues, while 33.8% of attacks (25 attacks) involved unspecified sports venues. A bombing or explosion was the most frequent method of attack employed, comprising 87.8% of attacks. The highest number of attacks occurred in the Middle East & North Africa. In total, 213 persons died and 699 more were wounded in attacks against sports venues. CONCLUSION: Although terrorist attacks against sports venues are uncommon, they carry the risk of mass casualties, especially when explosives are used. A greater understanding of the threat posed by terrorist attacks against sports venues can aid emergency preparedness planning and future medical responses

    Fatty acid desaturase-2 (ahFAD2) mutant alleles in peanut (Arachis hypogaea L.) pre-breeding lines: an insight into the source, features, discourse, and selection of novel pre-breeding lines

    Get PDF
    High oleic peanuts and derived food products offer longer shelf life benefits to the food processing industry in addition to multiple health benefits to the consumers. The two mutant alleles, ahFAD2A and ahFAD2B control composition of oleic, linoleic and palmitic acid content in peanut. A total of 563 peanut pre-breeding lines were tested for the presence ahFAD2A and ahFAD2B mutant alleles using allele specific markers. The ahFAD2A mutant allele was present in 82 lines, while none of these lines had ahFAD2B mutant allele. Among botanical types, ahFAD2A mutant allele was more frequent in lines with Virginia growth habit than Spanish bunch although no correlation of ahFAD2A mutant allele with high oleic acid content and growth habit could be established. Oleic and linoleic acid content in 82 prebreeding lines ranged from 39.70 to 62.70% and 17.76 to 31.95%, respectively, with maximum oleic to linoleic acid ratio of 4. Oleic acid was found to be negatively correlated with linoleic and palmitic acid. Further, pre-breeding lines with ahFAD2A mutant allele, high oleic content and high oleic to linoleic ratio were investigated and novel lines were identified for resistance to late leaf spot, short duration, higher pod yield and other yield related traits. These novel pre-breeding lines can be used as a potential donor in peanut improvement programme and to diversify the primary gene pool including initiating further research on induction of fresh ahFAD2B mutant allele

    Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer

    Get PDF
    INTRODUCTION Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice. METHODS More than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer 'stem' cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account. RESULTS The 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working. CONCLUSIONS With resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years

    EFFECTS OF LOW-DOSE-GAMMA RAYS ON THE IMMUNE SYSTEM OF DIFFERENT ANIMAL MODELS OF DISEASE

    Get PDF
    We reviewed the beneficial or harmful effects of low-dose ionizing radiation on several diseases based on a search of the literature. The attenuation of autoimmune manifestations in animal disease models irradiated with low-dose γ-rays was previously reported by several research groups, whereas the exacerbation of allergic manifestations was described by others. Based on a detailed examination of the literature, we divided animal disease models into two groups: one group consisting of collagen-induced arthritis (CIA), experimental encephalomyelitis (EAE), and systemic lupus erythematosus, the pathologies of which were attenuated by low-dose irradiation, and another group consisting of atopic dermatitis, asthma, and Hashimoto’s thyroiditis, the pathologies of which were exacerbated by low-dose irradiation. The same biological indicators, such as cytokine levels and Tcell subpopulations, were examined in these studies. Low-dose irradiation reduced interferon (IFN)-gamma (γ) and interleukin (IL)-6 levels and increased IL-5 levels and the percentage of CD4+CD25+Foxp3+Treg cells in almost all immunological disease cases examined. Variations in these biological indicators were attributed to the attenuation or exacerbation of the disease’s manifestation. We concluded that autoimmune diseases caused by autoantibodies were attenuated by low-dose irradiation, whereas diseases caused by antibodies against external antigens, such as atopic dermatitis, were exacerbated

    Metallothionein – overexpression as a highly significant prognostic factor in melanoma: a prospective study on 1270 patients

    Get PDF
    Metallothioneins (MT) are ubiquitous, intracellular small proteins with high affinity for heavy metal ions. In the last decades, it was shown that MT overexpression in a variety of cancers is associated with resistance to anticancer drugs and is combined with a poor prognosis. In this prospective study, we examined the role of MT overexpression in melanoma patients as a prognostic factor for progression and survival. Between 1993 and 2004, 3386 patients with primary cutaneous melanoma were investigated by using a monoclonal antibody against MT on routinely fixed, paraffin-embedded tissues. In all, 1270 patients could be followed up for further statistical analysis (Fisher's exact test, Mantel–Haenszel χ2 test, Kaplan–Meier curves). The MT data of disease-free interval and overall survival were compared univariately and multivariately in Cox regression analysis. Immunohistochemical overexpression of MT in tumour cells of patients with primary melanoma (310 of 1270; 24.4%) was associated with a higher risk for progression (117 of 167; 70.1%) and reduced survival (80 of 110; 72.7%) of the disease (P<0.0001). Similarly, Kaplan–Meier curves gave highly significant disadvantages for the MT-positive group. Univariate analysis (relative risk 7.4; 95% confidence interval (CI) 5.2–10.2; P<0.0001 for progression; relative risk 7.1; 95% CI 4.7–10.9; P<0.0001 for survival), as well as multivariate analysis with other prognostic markers resulted in MT overexpression as a highly significant and independent factor for prognosis in primary melanoma

    FOCUS4 biomarker laboratories: from the benefits to the practical and logistical issues faced during 6 years of centralised testing

    Get PDF
    Aims FOCUS4 was a phase II/III umbrella trial, recruiting patients with advanced or metastatic colorectal cancer, between 2014 and 2020. Molecular profiling of patients’ formalin-fixed, paraffin-embedded tumour blocks was undertaken at two centralised biomarker laboratories (Leeds and Cardiff), and the results fed directly to the Medical Research Council Clinical Trials Unit, and used for subsequent randomisation. Here the laboratories discuss their experiences. Methods Following successful tumour content assessment, blocks were sectioned for DNA extraction and immunohistochemistry (IHC). Pyrosequencing was initially used to determine tumour mutation status (KRAS, NRAS, BRAF and PIK3CA), then from 2018 onwards, next-generation sequencing was employed to allow the inclusion of TP53. Protein expression of MLH1, MSH2, MSH6, PMS2 and pTEN was determined by IHC. An interlaboratory comparison programme was initiated, allowing sample exchanges, to ensure continued assay robustness. Results 1291 tumour samples were successfully analysed. Assay failure rates were very low; 1.9%–3.3% for DNA sequencing and 0.9%–1.3% for IHC. Concordance rates of >98% were seen for the interlaboratory comparisons, where a result was obtained by both laboratories. Conclusions Practical and logistical problems were identified, including poor sample quality and difficulties with sample anonymisation. The often last-minute receipt of a sample for testing and a lack of integration with National Health Service mutation analysis services were challenging. The laboratories benefitted from both pretrial validations and interlaboratory comparisons, resulting in robust assay development and provided confidence during the implementation of new sequencing technologies. We conclude that our centralised approach to biomarker testing in FOCUS4 was effective and successful

    Metallothionein in human oesophagus, Barrett's epithelium and adenocarcinoma

    Get PDF
    The potential of the metal-binding protein, metallothionein, in assessing the progression of normal oesophagus through Barrett's to adenocarcinoma was investigated. Metallothionein was quantitatively determined in resected tissues from patients undergoing oesophagectomy for high grade dysplasia/adenocarcinoma and in biopsies from patients with Barrett's syndrome. In 10 cancer patients, metallothionein concentrations in adenocarcinoma were not significantly different from normal oesophagus, although six had elevated metallothionein concentrations in the metaplastic tissue bordering the adenocarcinoma. In 17 out of 20 non-cancer patients with Barrett's epithelium, metallothionein was significantly increased by 108% (P<0.004). There was no association between the metallothionein levels in Barrett's epithelium and the presence of inflammatory cells, metaplasia or dysplasia. Metallothionein is a marker of progression from normal to Barrett's epithelium but is not increased in oesophageal adenocarcinoma

    Improving oil quality by altering levels of fatty acids through marker-assisted selection of ahfad2 alleles in peanut (Arachis hypogaea L.)

    Get PDF
    Peanut plays a key role to the livelihood of millions in the world especially in Arid and Semi-Arid regions. Peanut with high oleic acid content aids to increase shelf-life of peanut oil as well as food products and extends major health benefits to the consumers. In peanut, ahFAD2 gene controls quantity of two major fatty acids viz, oleic and linoleic acids. These two fatty acids together with palmitic acid constitute 90% fat composition in peanut and regulate the quality of peanut oil. Here, two ahfad2 alleles from SunOleic 95R were introgressed into ICGV 05141 using marker-assisted selection. Marker-assisted breeding effectively increased oleic acid and oleic to linoleic acid ratio in recombinant lines up to 44% and 30%, respectively as compared to ICGV 05141. In addition to improved oil quality, the recombinant lines also had superiority in pod yield together with desired pod/seed attributes. Realizing the health benefits and ever increasing demand in domestic and international market, the high oleic peanut recombinant lines will certainly boost the economical benefits to the Indian farmers in addition to ensuring availability of high oleic peanuts to the traders and industry

    Quantitative metric profiles capture three-dimensional temporospatial architecture to discriminate cellular functional states

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computational analysis of tissue structure reveals sub-visual differences in tissue functional states by extracting quantitative signature features that establish a diagnostic profile. Incomplete and/or inaccurate profiles contribute to misdiagnosis.</p> <p>Methods</p> <p>In order to create more complete tissue structure profiles, we adapted our cell-graph method for extracting quantitative features from histopathology images to now capture temporospatial traits of three-dimensional collagen hydrogel cell cultures. Cell-graphs were proposed to characterize the spatial organization between the cells in tissues by exploiting graph theory wherein the nuclei of the cells constitute the <it>nodes </it>and the approximate adjacency of cells are represented with <it>edges</it>. We chose 11 different cell types representing non-tumorigenic, pre-cancerous, and malignant states from multiple tissue origins.</p> <p>Results</p> <p>We built cell-graphs from the cellular hydrogel images and computed a large set of features describing the structural characteristics captured by the graphs over time. Using three-mode tensor analysis, we identified the five most significant features (metrics) that capture the compactness, clustering, and spatial uniformity of the 3D architectural changes for each cell type throughout the time course. Importantly, four of these metrics are also the discriminative features for our histopathology data from our previous studies.</p> <p>Conclusions</p> <p>Together, these descriptive metrics provide rigorous quantitative representations of image information that other image analysis methods do not. Examining the changes in these five metrics allowed us to easily discriminate between all 11 cell types, whereas differences from visual examination of the images are not as apparent. These results demonstrate that application of the cell-graph technique to 3D image data yields discriminative metrics that have the potential to improve the accuracy of image-based tissue profiles, and thus improve the detection and diagnosis of disease.</p

    Detection of oncogenic virus genomes and gene products in lung carcinoma

    Get PDF
    We investigated a series of 122 cases of small cell lung carcinomas and non-small cell lung carcinomas for the presence of several viruses that are known to be oncogenic in humans. Thus, viral genomes (DNA) and/or RNA transcripts and/or proteins of human papillomaviruses (HPV) 16, 18, 31, 33, 51, Epstein–Barr virus (EBV), human herpesvirus 8 (HHV-8), human cytomegalovirus (HCMV) and simian virus 40 (SV40) were investigated on tissue sections (prepared in tissue microarrays) with different techniques of immunohistochemistry and in situ hybridisation. None of the cases displayed a single positive tumour cell for all the viruses tested whatever the technique applied. Of note, in five cases of tumours with lymphoid infiltrates, we detected scattered EBV (EBER)-positive bystander lymphocytes. In three cases, a faint nuclear staining was found with the anti-latent nuclear antigen/LANA1 (HHV-8) antibody. These cases were checked by PCR with two sets of primers (orf 26 and orf 75) and remained negative for this latter virus. Taken together, our data strongly suggest that the conventional human oncogenic viruses (HPV, EBV, HCMV, HHV-8 and SV40) are unlikely to play some role in the development of lung carcinomas
    corecore