141 research outputs found
Paramagnetic signature of microcrystalline silicon carbide
Abstract. The most important challenge on the way to optimized solar cells is to make the thickness of the individual layers smaller than the diffusion length of the charge carriers, in order to keep the collection efficiency close to unity. Here, we propose ß-SiC microcrystals grown by a sol-gel based process as a promising acceptor material. The samples are characterized by optical spectroscopy and electron paramagnetic resonance (EPR). With the help of band structures for selected surface states calculated in the framework of density functional theory (DFT) a possible scenario for the observed acceptor process is discussed
Serum tumor markers in pediatric osteosarcoma: a summary review
Osteosarcoma is the most common primary high-grade bone tumor in both adolescents and children. Early tumor detection is key to ensuring effective treatment. Serum marker discovery and validation for pediatric osteosarcoma has accelerated in recent years, coincident with an evolving understanding of molecules and their complex interactions, and the compelling need for improved pediatric osteosarcoma outcome measures in clinical trials. This review gives a short overview of serological markers for pediatric osteosarcoma, and highlights advances in pediatric osteosarcoma-related marker research within the past year. Studies in the past year involving serum markers in patients with pediatric osteosarcoma can be assigned to one of four categories, i.e., new approaches and new markers, exploratory studies in specialized disease subsets, large cross-sectional validation studies, and longitudinal studies, with and without an intervention
Circadian Rhythms of Fetal Liver Transcription Persist in the Absence of Canonical Circadian Clock Gene Expression Rhythms In Vivo
The cellular circadian clock and systemic cues drive rhythmicity in the transcriptome of adult peripheral tissues. However, the oscillating status of the circadian clocks in fetal tissues, and their response to maternal cues, are less clear. Most clock genes do not cycle in fetal livers from mice and rats, although tissue level rhythms rapidly emerge when fetal mouse liver explants are cultured in vitro. Thus, in the fetal mouse liver, the circadian clock does not oscillate at the cellular level (but is induced to oscillate in culture). To gain a comprehensive overview of the clock status in the fetal liver during late gestation, we performed microarray analyses on fetal liver tissues. In the fetal liver we did not observe circadian rhythms of clock gene expression or many other transcripts known to be rhythmically expressed in the adult liver. Nevertheless, JTK_CYCLE analysis identified some transcripts in the fetal liver that were rhythmically expressed, albeit at low amplitudes. Upon data filtering by coefficient of variation, the expression levels for transcripts related to pancreatic exocrine enzymes and zymogen secretion were found to undergo synchronized daily fluctuations at high amplitudes. These results suggest that maternal cues influence the fetal liver, despite the fact that we did not detect circadian rhythms of canonical clock gene expression in the fetal liver. These results raise important questions on the role of the circadian clock, or lack thereof, during ontogeny
B cell repertoires in HLA-sensitized kidney transplant candidates undergoing desensitization therapy
Irf4 is a positional and functional candidate gene for the control of serum IgM levels in the mouse
Natural IgM are involved in numerous immunological functions but the genetic factors that control the homeostasis of its
secretion and upholding remain unknown. Prompted by the finding that C57BL/6 mice had significantly lower serum levels of
IgM when compared with BALB/c mice, we performed a genome-wide screen and found that the level of serum IgM was
controlled by a QTL on chromosome 13 reaching the highest level of association at marker D13Mit266 (LOD score¼3.54).
This locus was named IgMSC1 and covered a region encompassing the interferon-regulatory factor 4 gene (Irf4). The number
of splenic mature B cells in C57BL/6 did not differ from BALB/c mice but we found that low serum levels of IgM in C57BL/6 mice
correlated with lower frequency of IgM-secreting cells in the spleen and in the peritoneal cavity. These results suggested that
C57BL/6 mice have lower efficiency in late B-cell maturation, a process that is highly impaired in Irf4 knockout mice. In fact, we
also found reduced Irf4 gene expression in B cells of C57BL/6 mice. Thus, we propose Irf4 as a candidate for the IgMSC1
locus, which controls IgM homeostatic levels at the level of B-cell terminal differentiation
Nocturnin Expression Is Induced by Fasting in the White Adipose Tissue of Restricted Fed Mice
The relationship between circadian clocks and metabolism is intimate and complex and a number of recent studies have begun to reveal previously unknown effects of food and its temporal availability on the clock and the rhythmic transcriptome of peripheral tissues. Nocturnin, a circadian deadenylase, is expressed rhythmically in a wide variety of tissues, but we report here that Nocturnin expression is arrhythmic in epididymal white adipose tissue (eWAT) of mice housed in 12∶12 LD with ad libitum access to food. However, Nocturnin expression becomes rhythmic in eWAT of mice placed on restricted feeding. We show here that Nocturnin's rhythmic expression pattern is not dependent upon feeding, nor is it acutely induced by feeding in the liver or eWAT of ad libitum fed mice. However, Nocturnin is acutely induced by the absence of the expected meal in eWAT of restricted fed mice. A rise in cAMP levels also induces Nocturnin expression, suggesting that Nocturnin's induction in eWAT by fasting is likely mediated through the same pathways that activate lipolysis. Therefore, this suggests that Nocturnin plays a role in linking nutrient sensing by the circadian clock to lipid mobilization in the adipocytes
IgM Promotes the Clearance of Small Particles and Apoptotic Microparticles by Macrophages
Background: Antibodies are often involved in enhancing particle clearance by macrophages. Although the mechanisms of antibody-dependent phagocytosis have been studied for IgG in greater detail, very little is known about IgM-mediated clearance. It has been generally considered that IgM does not support phagocytosis. Recent studies indicate that natural IgM is important to clear microbes and other bioparticles, and that shape is critical to particle uptake by macrophages; however, the relevance of IgM and particle size in their clearance remains unclear. Here we show that IgM has a sizedependent effect on clearance. Methodology/Principal Findings: We used antibody-opsonized sheep red blood cells, different size beads and apoptotic cells to determine the effect of human and mouse IgM on phagocytosis by mouse alveolar macrophages. Our microscopy (light, epifluorescence, confocal) and flow cytometry data show that IgM greatly enhances the clearance of small particles (about 1–2 micron) by these macrophages. There is an inverse relationship between IgM-mediated clearance by macrophages and the particle size; however, macrophages bind and internalize many different size particles coated with IgG. We also show that IgM avidly binds to small size late apoptotic cells or bodies (2–5 micron) and apoptotic microparticles (,2 mm) released from dying cells. IgM also promotes the binding and uptake of microparticle-coated beads. Conclusions/Significance: Therefore, while the shape of the particles is important for non-opsonized particle uptake, th
In vivo tumor cell adhesion in the pulmonary microvasculature is exclusively mediated by tumor cell - endothelial cell interaction
<p>Abstract</p> <p>Background</p> <p>Metastasis formation is the leading cause of death among colon cancer patients. We established a new in-situ model of in vivo microscopy of the lung to analyse initiating events of metastatic tumor cell adhesion within this typical metastatic target of colon cancer.</p> <p>Methods</p> <p>Anaesthetized CD rats were mechanically ventilated and 10<sup>6 </sup>human HT-29LMM and T84 colon cancer cells were injected intracardially as single cell suspensions. Quantitative in vivo microscopy of the lung was performed in 10 minute intervals for a total of 40 minutes beginning with the time of injection.</p> <p>Results</p> <p>After vehicle treatment of HT-29LMM controls 15.2 ± 5.3; 14.2 ± 7.5; 11.4 ± 5.5; and 15.4 ± 6.5 cells/20 microscopic fields were found adherent within the pulmonary microvasculature in each 10 minute interval. Similar numbers were found after injection of the lung metastasis derived T84 cell line and after treatment of HT-29LMM with unspecific mouse control-IgG. Subsequently, HT-29LMM cells were treated with function blocking antibodies against β1-, β4-, and αv-integrins wich also did not impair tumor cell adhesion in the lung. In contrast, after hydrolization of sialylated glycoproteins on the cells' surface by neuraminidase, we observed impairment of tumor cell adhesion by more than 50% (p < 0.05). The same degree of impairment was achieved by inhibition of P- and L-selectins via animal treatment with fucoidan (p < 0.05) and also by inhibition of the Thomson-Friedenreich (TF)-antigen (p < 0.05).</p> <p>Conclusions</p> <p>These results demonstrate that the initial colon cancer cell adhesion in the capillaries of the lung is predominantly mediated by tumor cell - endothelial cell interactions, possibly supported by platelets. In contrast to reports of earlier studies that metastatic tumor cell adhesion occurs through integrin mediated binding of extracellular matrix proteins in liver, in the lung, the continuously lined endothelium appears to be specifically targeted by circulating tumor cells.</p
Deltaproteobacteria (Pelobacter) and Methanococcoides are responsible for choline-dependent methanogenesis in a coastal saltmarsh sediment
Coastal saltmarsh sediments represent an important source of natural methane emissions, much of which originates from quaternary and methylated amines, such as choline and trimethylamine. In this study, we combine DNA stable isotope probing with high throughput sequencing of 16S rRNA genes and 13C2-choline enriched metagenomes, followed by metagenome data assembly, to identify the key microbes responsible for methanogenesis from choline. Microcosm incubation with 13C2-choline leads to the formation of trimethylamine and subsequent methane production, suggesting that choline-dependent methanogenesis is a two-step process involving trimethylamine as the key intermediate. Amplicon sequencing analysis identifies Deltaproteobacteria of the genera Pelobacter as the major choline utilizers. Methanogenic Archaea of the genera Methanococcoides become enriched in choline-amended microcosms, indicating their role in methane formation from trimethylamine. The binning of metagenomic DNA results in the identification of bins classified as Pelobacter and Methanococcoides. Analyses of these bins reveal that Pelobacter have the genetic potential to degrade choline to trimethylamine using the choline-trimethylamine lyase pathway, whereas Methanococcoides are capable of methanogenesis using the pyrrolysine-containing trimethylamine methyltransferase pathway. Together, our data provide a new insight on the diversity of choline utilizing organisms in coastal sediments and support a syntrophic relationship between Bacteria and Archaea as the dominant route for methanogenesis from choline in this environment
A genomic catalog of Earth’s microbiomes
The reconstruction of bacterial and archaeal genomes from shotgun metagenomes has enabled insights into the ecology and evolution of environmental and host-associated microbiomes. Here we applied this approach to >10,000 metagenomes collected from diverse habitats covering all of Earth’s continents and oceans, including metagenomes from human and animal hosts, engineered environments, and natural and agricultural soils, to capture extant microbial, metabolic and functional potential. This comprehensive catalog includes 52,515 metagenome-assembled genomes representing 12,556 novel candidate species-level operational taxonomic units spanning 135 phyla. The catalog expands the known phylogenetic diversity of bacteria and archaea by 44% and is broadly available for streamlined comparative analyses, interactive exploration, metabolic modeling and bulk download. We demonstrate the utility of this collection for understanding secondary-metabolite biosynthetic potential and for resolving thousands of new host linkages to uncultivated viruses. This resource underscores the value of genome-centric approaches for revealing genomic properties of uncultivated microorganisms that affect ecosystem processes
- …