39 research outputs found

    Helical Chirality: a Link between Local Interactions and Global Topology in DNA

    Get PDF
    DNA supercoiling plays a major role in many cellular functions. The global DNA conformation is however intimately linked to local DNA-DNA interactions influencing both the physical properties and the biological functions of the supercoiled molecule. Juxtaposition of DNA double helices in ubiquitous crossover arrangements participates in multiple functions such as recombination, gene regulation and DNA packaging. However, little is currently known about how the structure and stability of direct DNA-DNA interactions influence the topological state of DNA. Here, a crystallographic analysis shows that due to the intrinsic helical chirality of DNA, crossovers of opposite handedness exhibit markedly different geometries. While right-handed crossovers are self-fitted by sequence-specific groove-backbone interaction and bridging Mg2+ sites, left-handed crossovers are juxtaposed by groove-groove interaction. Our previous calculations have shown that the different geometries result in differential stabilisation in solution, in the presence of divalent cations. The present study reveals that the various topological states of the cell are associated with different inter-segmental interactions. While the unstable left-handed crossovers are exclusively formed in negatively supercoiled DNA, stable right-handed crossovers constitute the local signature of an unusual topological state in the cell, such as the positively supercoiled or relaxed DNA. These findings not only provide a simple mechanism for locally sensing the DNA topology but also lead to the prediction that, due to their different tertiary intra-molecular interactions, supercoiled molecules of opposite signs must display markedly different physical properties. Sticky inter-segmental interactions in positively supercoiled or relaxed DNA are expected to greatly slow down the slithering dynamics of DNA. We therefore suggest that the intrinsic helical chirality of DNA may have oriented the early evolutionary choices for DNA topology

    13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation

    No full text
    Xenopus 13S condensin converts interphase chromatin into mitotic-like chromosomes, and, in the presence of ATP and a type I topoisomerase, introduces (+) supercoils into DNA. The specific production of (+) trefoil knots in the presence of condensin and a type II topoisomerase shows that condensin reconfigures DNA by introducing an ordered, global, (+) writhe. Knotting required ATP hydrolysis and cell cycle-specific phosphorylation of condensin. Condensin bound preferentially to (+) supercoiled DNA in the presence of ATP but not in its absence. Our results suggest a mechanism for the compaction of chromatin by condensin during mitosis

    Synapsis and catalysis by activated Tn3 resolvase mutants

    Get PDF
    The serine recombinase Tn3 resolvase catalyses recombination between two 114 bp res sites, each of which contains binding sites for three resolvase dimers. We have analysed the in vitro properties of resolvase variants with ‘activating’ mutations, which can catalyse recombination at binding site I of res when the rest of res is absent. Site I × site I recombination promoted by these variants can be as fast as res × res recombination promoted by wild-type resolvase. Activated variants have reduced topological selectivity and no longer require the 2–3′ interface between subunits that is essential for wild-type resolvase-mediated recombination. They also promote formation of a stable synapse comprising a resolvase tetramer and two copies of site I. Cleavage of the DNA strands by the activated mutants is slow relative to the rate of synapsis. Stable resolvase tetramers were not detected in the absence of DNA or bound to a single site I. Our results lead us to conclude that the synapse is assembled by sequential binding of resolvase monomers to site I followed by interaction of two site I-dimer complexes. We discuss the implications of our results for the mechanisms of synapsis and regulation in recombination by wild-type resolvase
    corecore