83 research outputs found

    Integrated Cycles for Urban Biomass as a Strategy to Promote a CO2-Neutral Society—A Feasibility Study

    Get PDF
    The integration of closed biomass cycles into residential buildings enables efficient resource utilization and avoids the transport of biowaste. In our scenario called Integrated Cycles for Urban Biomass (ICU), biowaste is degraded on-site into biogas that is converted into heat and electricity. Nitrification processes upgrade the liquid fermentation residues to refined fertilizer, which can be used subsequently in house-internal gardens to produce fresh food for residents. Our research aims to assess the ICU scenario regarding produced amounts of biogas and food, saved CO2 emissions and costs, and social–cultural aspects. Therefore, a model-based feasibility study was performed assuming a building with 100 residents. The calculations show that the ICU concept produces 21% of the annual power (electrical and heat) consumption from the accumulated biowaste and up to 7.6 t of the fresh mass of lettuce per year in a 70 m2 professional hydroponic production area. Furthermore, it saves 6468 kg CO2-equivalent (CO2-eq) per year. While the ICU concept is technically feasible, it becomes economically feasible for large-scale implementations and higher food prices. Overall, this study demonstrates that the ICU implementation can be a worthwhile contribution towards a sustainable CO2-neutral society and decrease the demand for agricultural land

    Negative Ions in Space

    Get PDF
    Until a decade ago, the only anion observed to play a prominent role in astrophysics was H–. The bound–free transitions in H– dominate the visible opacity in stars with photospheric temperatures less than 7000 K, including the Sun. The H– anion is also believed to have been critical to the formation of molecular hydrogen in the very early evolution of the Universe. Once H₂ formed, about 500 000 years after the Big Bang, the expanding gas was able to lose internal gravitational energy and collapse to form stellar objects and “protogalaxies”, allowing the creation of heavier elements such as C, N, and O through nucleosynthesis. Although astronomers had considered some processes through which anions might form in interstellar clouds and circumstellar envelopes, including the important role that polycyclic aromatic hydrocarbons might play in this, it was the detection in 2006 of rotational line emission from C₆H– that galvanized a systematic study of the abundance, distribution, and chemistry of anions in the interstellar medium. In 2007, the Cassini mission reported the unexpected detection of anions with mass-to-charge ratios of up to ˜10 000 in the upper atmosphere of Titan; this observation likewise instigated the study of fundamental chemical processes involving negative ions among planetary scientists. In this article, we review the observations of anions in interstellar clouds, circumstellar envelopes, Titan, and cometary comae. We then discuss a number of processes by which anions can be created and destroyed in these environments. The derivation of accurate rate coefficients for these processes is an essential input for the chemical kinetic modeling that is necessary to fully extract physics from the observational data. We discuss such models, along with their successes and failings, and finish with an outlook on the future

    Identifying networks in social media: The case of #Grexit

    Get PDF
    We examine the intensity of ‘#Grexit’ usage in Twitter during a period of economic and financial turbulence. Using a frequency-analysis technique, we illustrate that we can extract detailed information from social media data. This allows us to map the networks of interest as it is reflected in Twitter. Our findings identify high-interest in Grexit from Twitter users in key peripheral countries, core Eurozone members as well as core EU member states outside the Eurozone. Overall, our study presents a useful tool for identifying clusters. This is part of a new research agenda utilising the information extracted from big data available via social media channels

    MARK4 controls ischaemic heart failure through microtubule detyrosination.

    Get PDF
    Myocardial infarction is a major cause of premature death in adults. Compromised cardiac function after myocardial infarction leads to chronic heart failure with systemic health complications and a high mortality rate1. Effective therapeutic strategies are needed to improve the recovery of cardiac function after myocardial infarction. More specifically, there is a major unmet need for a new class of drugs that can improve cardiomyocyte contractility, because inotropic therapies that are currently available have been associated with high morbidity and mortality in patients with systolic heart failure2,3 or have shown a very modest reduction of risk of heart failure4. Microtubule detyrosination is emerging as an important mechanism for the regulation of cardiomyocyte contractility5. Here we show that deficiency of microtubule-affinity regulating kinase 4 (MARK4) substantially limits the reduction in the left ventricular ejection fraction after acute myocardial infarction in mice, without affecting infarct size or cardiac remodelling. Mechanistically, we provide evidence that MARK4 regulates cardiomyocyte contractility by promoting phosphorylation of microtubule-associated protein 4 (MAP4), which facilitates the access of vasohibin 2 (VASH2)-a tubulin carboxypeptidase-to microtubules for the detyrosination of α-tubulin. Our results show how the detyrosination of microtubules in cardiomyocytes is finely tuned by MARK4 to regulate cardiac inotropy, and identify MARK4 as a promising therapeutic target for improving cardiac function after myocardial infarction.BHF fellowship grant (FS/14/28/30713), Issac Newton Trust Grant (18.40u), and Cambridge BHF Centre of Research Excellence grants (RE/13/6/30180 and RE/18/1/34212)

    Rho GTPase function in flies: insights from a developmental and organismal perspective.

    Get PDF
    Morphogenesis is a key event in the development of a multicellular organism and is reliant on coordinated transcriptional and signal transduction events. To establish the segmented body plan that underlies much of metazoan development, individual cells and groups of cells must respond to exogenous signals with complex movements and shape changes. One class of proteins that plays a pivotal role in the interpretation of extracellular cues into cellular behavior is the Rho family of small GTPases. These molecular switches are essential components of a growing number of signaling pathways, many of which regulate actin cytoskeletal remodeling. Much of our understanding of Rho biology has come from work done in cell culture. More recently, the fruit fly Drosophila melanogaster has emerged as an excellent genetic system for the study of these proteins in a developmental and organismal context. Studies in flies have greatly enhanced our understanding of pathways involving Rho GTPases and their roles in development

    G-protein signaling: back to the future

    Get PDF
    Heterotrimeric G-proteins are intracellular partners of G-protein-coupled receptors (GPCRs). GPCRs act on inactive Gα·GDP/GÎČÎł heterotrimers to promote GDP release and GTP binding, resulting in liberation of Gα from GÎČÎł. Gα·GTP and GÎČÎł target effectors including adenylyl cyclases, phospholipases and ion channels. Signaling is terminated by intrinsic GTPase activity of Gα and heterotrimer reformation — a cycle accelerated by ‘regulators of G-protein signaling’ (RGS proteins). Recent studies have identified several unconventional G-protein signaling pathways that diverge from this standard model. Whereas phospholipase C (PLC) ÎČ is activated by Gαq and GÎČÎł, novel PLC isoforms are regulated by both heterotrimeric and Ras-superfamily G-proteins. An Arabidopsis protein has been discovered containing both GPCR and RGS domains within the same protein. Most surprisingly, a receptor-independent Gα nucleotide cycle that regulates cell division has been delineated in both Caenorhabditis elegans and Drosophila melanogaster. Here, we revisit classical heterotrimeric G-protein signaling and explore these new, non-canonical G-protein signaling pathways

    Tau-based treatment strategies in neurodegenerative diseases

    Full text link

    The Rac-RhoGDI complex and the structural basis for the regulation of Rho proteins by RhoGDI

    No full text
    Rho family-specific guanine nucleotide dissociation inhibitors (RhoGDIs) decrease the rate of nucleotide dissociation and release Rho proteins such as RhoA, Rac and Cdc42 from membranes, forming tight complexes that shuttle between cytosol and membrane compartments. We have solved the crystal structure of a complex between the RhoGDI homolog LyGDI and GDP-bound Rac2, which are abundant in leukocytes, representing the cytosolic, resting pool of Rho species to be activated by extracellular signals. The N-terminal domain of LyGDI (LyN), which has been reported to be flexible in isolated RhoGDIs, becomes ordered upon complex formation and contributes more than 60% to the interface area. The structure is consistent with the C-terminus of Rac2 binding to a hydrophobic cavity previously proposed as isoprenyl binding site. An inner segment of LyN forms a helical hairpin that contacts mainly the switch regions of Rac2. The architecture of the complex interface suggests a mechanism for the inhibition of guanine nucleotide dissociation that is based on the stabilization of the magnesium (Mg2+) ion in the nucleotide binding pocket
    • 

    corecore