682 research outputs found

    Infinite dimensional Lie algebras in 4D conformal quantum field theory

    Full text link
    The concept of global conformal invariance (GCI) opens the way of applying algebraic techniques, developed in the context of 2-dimensional chiral conformal field theory, to a higher (even) dimensional space-time. In particular, a system of GCI scalar fields of conformal dimension two gives rise to a Lie algebra of harmonic bilocal fields, V_m(x,y), where the m span a finite dimensional real matrix algebra M closed under transposition. The associative algebra M is irreducible iff its commutant M' coincides with one of the three real division rings. The Lie algebra of (the modes of) the bilocal fields is in each case an infinite dimensional Lie algebra: a central extension of sp(infty,R) corresponding to the field R of reals, of u(infty,infty) associated to the field C of complex numbers, and of so*(4 infty) related to the algebra H of quaternions. They give rise to quantum field theory models with superselection sectors governed by the (global) gauge groups O(N), U(N), and U(N,H)=Sp(2N), respectively.Comment: 16 pages, with minor improvements as to appear in J. Phys.

    ЀлСксибилната Сндоскопия ΠΏΡ€ΠΈ заболявания Π½Π° Π³ΠΎΡ€Π½ΠΈΡ‚Π΅ Π΄ΠΈΡ…Π°Ρ‚Π΅Π»Π½ΠΈ ΠΏΡŠΡ‚ΠΈΡ‰Π° – диагностични Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ ΠΈ ΠΏΠΎΠ»Π·ΠΈ

    Get PDF
    Π¦Π΅Π»ΠΈΡ‚Π΅ Π½Π° Ρ‚Π°Π·ΠΈ статия са Π΄Π° сС ΠΏΡ€ΠΎΡƒΡ‡Π°Ρ‚ ΠΈ ΠΈΠ·Π»ΠΎΠΆΠ°Ρ‚ Π²ΡŠΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΠΈΡ‚Π΅ ΠΈ прСдимствата Π½Π° флСксибилната Сндоскопия Π½Π° Π³ΠΎΡ€Π½ΠΈΡ‚Π΅ Π΄ΠΈΡ…Π°Ρ‚Π΅Π»Π½ΠΈ ΠΏΡŠΡ‚ΠΈΡ‰Π° Π² ΠΎΡ‚ΠΎΡ€ΠΈΠ½ΠΎΠ»Π°Ρ€ΠΈΠ½Π³ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½Π°Ρ‚Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ°.Π’ΡŠΡ€Ρ…Ρƒ 191 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈ с Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΈ заболявания Π½Π° Π³ΠΎΡ€Π½ΠΈΡ‚Π΅ Π΄ΠΈΡ…Π°Ρ‚Π΅Π»Π½ΠΈ ΠΏΡŠΡ‚ΠΈΡ‰Π° Π·Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° юни 2008 Π΄ΠΎ юни 2011 Π³., Π² УНГ-ΠΊΠ»ΠΈΠ½ΠΈΠΊΠ° Π½Π° Π£ΠœΠ‘ΠΠ› β€žΠ‘Π². Π“Π΅ΠΎΡ€Π³ΠΈβ€œ – Пловдив ΠΈΠ·Π²ΡŠΡ€ΡˆΠΈΡ…ΠΌΠ΅ Π² Π°ΠΌΠ±ΡƒΠ»Π°Ρ‚ΠΎΡ€Π΅Π½ ΠΏΠΎΡ€ΡΠ΄ΡŠΠΊ ΠΈΠ»ΠΈ ΠΏΡ€ΠΈ Π»Π΅Π³Π»ΠΎΡ‚ΠΎ Π½Π° болния Ρ„ΠΈΠ±Ρ€ΠΎΠ½Π°Π·ΠΎ-Спифаринголарингоскопии. Π˜Π·ΡΠ»Π΅Π΄Π²Π°Π½Π΅Ρ‚ΠΎ ΠΈΠ·Π²ΡŠΡ€ΡˆΠ²Π°Ρ…ΠΌΠ΅ ΠΏΠΎΠ΄ мСстна анСстСзия, с трансназалСн Π΄ΠΎΡΡ‚ΡŠΠΏ ΠΊΠ°Ρ‚ΠΎ ΠΈΠ·ΠΏΠΎΠ»Π·Π²Π°Ρ…ΠΌΠ΅ Π½Π°Π·Π°Π»Π½ΠΈ дСконгСстанти. Показания Π·Π° Сндоскопията Π½Π° горния Π΄ΠΈΡ…Π°Ρ‚Π΅Π»Π΅Π½ ΠΏΡŠΡ‚ бяха – дисфония, дисфагия ΠΈ Π·Π°Ρ‚Ρ€ΡƒΠ΄Π½Π΅Π½ΠΎ носно дишанС ΠΏΡ€ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈ, Π½Π° ΠΊΠΎΠΈΡ‚ΠΎ класичСската ΠΎΠ³Π»Π΅Π΄Π°Π»Π½Π° Π΅ΠΏΠΈΡ„Π°Ρ€ΠΈΠ½Π³ΠΎ ΠΈ ларингоскопия Π½Π΅ Π΄Π°Π²Π°Ρ…Π° ΠΈΠ·Ρ‡Π΅Ρ€ΠΏΠ°Ρ‚Π΅Π»Π½Π° информация Π·Π° поставянСто Π½Π° Π΄ΠΈΠ°Π³Π½ΠΎΠ·Π°Ρ‚Π°, ΠΊΠ°ΠΊΡ‚ΠΎ ΠΈ ΠΏΡ€ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈ с Ρ‚Π΅ΠΆΠΊΠΈ ΠΏΡ€ΠΈΠ΄Ρ€ΡƒΠΆΠ°Π²Π°Ρ‰ΠΈ заболявания, ΠΏΡ€ΠΈ ΠΊΠΎΠΈΡ‚ΠΎ ΠΈΠ·Π²ΡŠΡ€ΡˆΠ²Π°Π½Π΅Ρ‚ΠΎ Π½Π° Π΄ΠΈΡ€Π΅ΠΊΡ‚Π½Π° ларингоскопия ΠΏΠΎΠ΄ ΠΎΠ±Ρ‰Π° анСстСзия бСшС ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π·Π°Ρ€Π°Π΄ΠΈ Ρ‚Π΅ΠΆΠΊΠΈ ΠΏΡ€ΠΈΠ΄Ρ€ΡƒΠΆΠ°Π²Π°Ρ‰ΠΈ заболявания ΠΈ повишСн риск ΠΎΡ‚ ΠΆΠΈΠ²ΠΎΡ‚ΠΎΠ·Π°ΡΡ‚Ρ€Π°ΡˆΠ°Π²Π°Ρ‰ΠΈ ΠΈΠ½Ρ†ΠΈΠ΄Π΅Π½Ρ‚ΠΈ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅ Π½Π° анСстСзията. Π Π°Π±ΠΎΡ‚Π΅Ρ…ΠΌΠ΅ с фибробронхоскоп Olympus с външСн Π΄ΠΈΠ°ΠΌΠ΅Ρ‚ΡŠΡ€ 2,2 ΠΌΠΌ ΠΈ Ρ€Π°Π±ΠΎΡ‚Π΅Π½ ΠΊΠ°Π½Π°Π» 1,2 ΠΌΠΌ снабдСн с Ρ„ΠΈΠ±Ρ€ΠΎΡ‰ΠΈΠΏΠΊΠ°, ΠΊΠΎΠΉΡ‚ΠΎ ΠΈΠ·ΠΏΠΎΠ»Π·Π²Π°Ρ…ΠΌΠ΅ Π·Π° ΠΎΠ³Π»Π΅Π΄ Π½Π° Π΄Π΅Ρ†Π° Π²ΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»Π½ΠΎ ΠΈ Π½ΠΎΠ²ΠΎΡ€ΠΎΠ΄Π΅Π½ΠΈ. Π—Π° Π²ΡŠΠ·Ρ€Π°ΡΡ‚Π½ΠΈ ΠΈΠ·ΠΏΠΎΠ»Π·ΡƒΠ²Π°Ρ…ΠΌΠ΅ фибробронхоскоп Karl Storz Ρ„5,2 ΠΌΠΌ с Ρ€Π°Π±ΠΎΡ‚Π΅Π½ ΠΊΠ°Π½Π°Π» 3,2 ΠΌΠΌ. ЀиброСндоскопитС Π°Π΄Π°ΠΏΡ‚ΠΈΡ€Π°Ρ…ΠΌΠ΅ към Сндоскопска Π²ΠΈΠ΄Π΅ΠΎΠΊΠ°ΠΌΠ΅Ρ€Π° Olympus ΡΠ²ΡŠΡ€Π·Π°Π½Π° с Π²ΠΈΠ΄Π΅ΠΎΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ ΠΈ записващо DVD Π·Π° фотодокумСнтация. ΠŸΡ€Π΅Π· послСдната Π³ΠΎΠ΄ΠΈΠ½Π° ΠΎΡ‚ Π½Π°ΡˆΠ΅Ρ‚ΠΎ ΠΏΡ€ΠΎΡƒΡ‡Π²Π°Π½Π΅ изслСдванията ΠΈΠ·Π²ΡŠΡ€ΡˆΠ²Π°Ρ…ΠΌΠ΅ със XYON флСксибилСн назофаринголарингоскоп с Π²ΠΈΠ΄Π΅ΠΎΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€.Π Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ: На 191 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈ , ΠΎΡ‚ ΠΊΠΎΠΈΡ‚ΠΎ 151 мъТС (80,29%) ΠΈ 40 ΠΆΠ΅Π½ΠΈ (20.8%), Π½Π° срСдна Π²ΡŠΠ·Ρ€Π°ΡΡ‚ 48.4 Π³ΠΎΠ΄ΠΈΠ½ΠΈ ΠΈΠ·Π²ΡŠΡ€ΡˆΠ²Π°Ρ…ΠΌΠ΅ фиброСндоскопии Π½Π° Π³ΠΎΡ€Π½ΠΈΡ‚Π΅ Π΄ΠΈΡ…Π°Ρ‚Π΅Π»Π½ΠΈ ΠΏΡŠΡ‚ΠΈΡ‰Π°. Най-чСститС заболявания, ΠΊΠΎΠΈΡ‚ΠΎ ΠΎΡ‚ΠΊΡ€ΠΈΡ…ΠΌΠ΅ ΠΏΡ€ΠΈ сСрията ΠΎΡ‚ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈ бяха слСднитС: Π±Π΅Π½ΠΈΠ³Π½Π΅Π½ΠΈ Π°Π±Π½ΠΎΡ€ΠΌΠ°Π»ΠΈΡ‚Π΅Ρ‚ΠΈ Π½Π° ларинкса 51 (26,7%), ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΠΈ Π½Π° ларинкса 24 (12.3%), ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΠΈ Π½Π° хипофаринкса 18 (9,2%), ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΠΈ Π½Π° Спифаринкса 14 (7,2%), ΠΏΠ°Ρ€Π΅Π·ΠΈ Π½Π° гласнитС Π²Ρ€ΡŠΠ·ΠΊΠΈ 26 (13,4%), Π΅Π΄Π΅ΠΌ Π½Π° ларинкса 8 (4,1%), Π½Π°Π·Π°Π»Π½Π° патология 28 (14,4%) Π²Ρ€ΠΎΠ΄Π΅Π½ΠΈ Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΈ 5 (2,5%), смущСния Π² Π°ΠΊΡ‚Π° Π½Π° Π³ΡŠΠ»Ρ‚Π°Π½Π΅Ρ‚ΠΎ слСд частични Ρ…ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»Π½ΠΈ Ρ€Π΅Π·Π΅ΠΊΡ†ΠΈΠΈ Π½Π° ларинкса ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄ ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌ 8 (4,1%), Ρ‡ΡƒΠΆΠ΄ΠΈ Ρ‚Π΅Π»Π° Π² носа Π½Π°Π·ΠΎ,хипофаринкса ΠΈ Ρ…Ρ€Π°Π½ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Π° 6 (3,09%).Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅: ЀлСксибилната Сндоскопия Π½Π° Π³ΠΎΡ€Π½ΠΈΡ‚Π΅ Π΄ΠΈΡ…Π°Ρ‚Π΅Π»Π½ΠΈ ΠΏΡŠΡ‚ΠΈΡ‰Π° Π΅ ΠΈΠ·ΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»Π½ΠΎ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎ инструмСнтално изслСдванС ΠΏΡ€ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈ с Ρ€Π°Π·Π»ΠΈΡ‡Π½Π° патология Π½Π° Π³ΠΎΡ€Π½ΠΈΡ‚Π΅ Π΄ΠΈΡ…Π°Ρ‚Π΅Π»Π½ΠΈ ΠΏΡŠΡ‚ΠΈΡ‰Π°. ΠŸΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π°Ρ‚Π° Π΅ лСсно изпълнима ΠΏΠΎΠ΄ Π»ΠΎΠΊΠ°Π»Π½Π° анСстСзия Π² Π°ΠΌΠ±ΡƒΠ»Π°Ρ‚ΠΎΡ€Π½ΠΈ условия, ΠΊΠ°ΠΊΡ‚ΠΎ ΠΈ ΠΏΡ€ΠΈ Π»Π΅Π³Π»ΠΎΡ‚ΠΎ Π½Π° болния. Π’ΡŠΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΠΈΡ‚Π΅ Π·Π° Π²Π·ΠΈΠΌΠ°Π½Π΅ Π½Π° биопсии ΠΏΠΎΠ΄ Π»ΠΎΠΊΠ°Π»Π½Π° анСстСзия ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅ Π½Π° Сндоскопския ΠΎΠ³Π»Π΅Π΄ я ΠΏΡ€Π°Π²ΠΈ Ρ†Π΅Π½Π΅Π½ ΠΏΡ€ΠΈΠ΄Π°Ρ‚ΡŠΠΊ ΠΊΠ°ΠΊΡ‚ΠΎ Π² ΠΎΠ±Ρ€Π°Π·Π½ΠΎΡ‚ΠΎ изслСдванС Π½Π° горния Π΄ΠΈΡ…Π°Ρ‚Π΅Π»Π΅Π½ ΠΏΡŠΡ‚, Ρ‚Π°ΠΊΠ° ΠΈ Π² хистологичната вСрификация Π½Π° ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½ΠΈ процСси Π½Π° горният Π΄ΠΈΡ…Π°Ρ‚Π΅Π»Π΅Π½ ΠΏΡŠΡ‚. ВСхнологичният Π½Π°ΠΏΡ€Π΅Π΄ΡŠΠΊ Π² областта Π΄Π°Π²Π° Π²ΡŠΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ Π·Π° създаванС Π½Π° Сндоскопска Π°ΠΏΠ°Ρ€Π°Ρ‚ΡƒΡ€Π°, ΠΏΡ€ΠΈΠ»ΠΎΠΆΠΈΠΌΠ° Π·Π° изслСдвания Π΄ΠΎΡ€ΠΈ ΠΏΡ€ΠΈ Π½ΠΎΠ²ΠΎΡ€ΠΎΠ΄Π΅Π½ΠΈ

    Physical properties, starspot activity, orbital obliquity, and transmission spectrum of the Qatar-2 planetary system from multi-colour photometry

    Full text link
    We present seventeen high-precision light curves of five transits of the planet Qatar-2b, obtained from four defocussed 2m-class telescopes. Three of the transits were observed simultaneously in the SDSS griz passbands using the seven-beam GROND imager on the MPG/ESO 2.2-m telescope. A fourth was observed simultaneously in Gunn grz using the CAHA 2.2-m telescope with BUSCA, and in r using the Cassini 1.52-m telescope. Every light curve shows small anomalies due to the passage of the planetary shadow over a cool spot on the surface of the host star. We fit the light curves with the prism+gemc model to obtain the photometric parameters of the system and the position, size and contrast of each spot. We use these photometric parameters and published spectroscopic measurements to obtain the physical properties of the system to high precision, finding a larger radius and lower density for both star and planet than previously thought. By tracking the change in position of one starspot between two transit observations we measure the orbital obliquity of Qatar-2 b to be 4.3 \pm 4.5 degree, strongly indicating an alignment of the stellar spin with the orbit of the planet. We calculate the rotation period and velocity of the cool host star to be 11.4 \pm 0.5 d and 3.28 \pm 0.13 km/s at a colatitude of 74 degree. We assemble the planet's transmission spectrum over the 386-976 nm wavelength range and search for variations of the measured radius of Qatar-2 b as a function of wavelength. Our analysis highlights a possible H2/He Rayleigh scattering in the blue.Comment: 20 pages, 14 figures, to appear in Monthly Notices of the Royal Astronomical Societ

    Jacobi Identity for Vertex Algebras in Higher Dimensions

    Full text link
    Vertex algebras in higher dimensions provide an algebraic framework for investigating axiomatic quantum field theory with global conformal invariance. We develop further the theory of such vertex algebras by introducing formal calculus techniques and investigating the notion of polylocal fields. We derive a Jacobi identity which together with the vacuum axiom can be taken as an equivalent definition of vertex algebra.Comment: 35 pages, references adde

    Simultaneous follow-up of planetary transits: revised physical properties for the planetary systems HAT-P-16 and WASP-21

    Full text link
    Context. By now more than 300 planets transiting their host star have been found, and much effort is being put into measuring the properties of each system. Light curves of planetary transits often contain deviations from a simple transit shape, and it is generally difficult to differentiate between anomalies of astrophysical nature (e.g. starspots) and correlated noise due to instrumental or atmospheric effects. Our solution is to observe transit events simultaneously with two telescopes located at different observatories. Aims. Using this observational strategy, we look for anomalies in the light curves of two transiting planetary systems and accurately estimate their physical parameters. Methods. We present the first photometric follow-up of the transiting planet HAT-P-16 b, and new photometric observations of WASP-21 b, obtained simultaneously with two medium-class telescopes located in different countries, using the telescope defocussing technique. We modeled these and other published data in order to estimate the physical parameters of the two planetary systems. Results. The simultaneous observations did not highlight particular features in the light curves, which is consistent with the low activity levels of the two stars. For HAT-P-16, we calculated a new ephemeris and found that the planet is 1.3 \sigma colder and smaller (Rb = 1.190 \pm 0.037 RJup) than the initial estimates, suggesting the presence of a massive core. Our physical parameters for this system point towards a younger age than previously thought. The results obtained for WASP-21 reveal lower values for the mass and the density of the planet (by 1.0 \sigma and 1.4 \sigma respectively) with respect to those found in the discovery paper, in agreement with a subsequent study. We found no evidence of any transit timing variations in either system.Comment: 8 pages, 6 figures, accepted for publication in A&

    HATS-5b: A Transiting hot-Saturn from the HATSouth Survey

    Get PDF
    We report the discovery of HATS-5b, a transiting hot-Saturn orbiting a G type star, by the HAT-South survey. HATS-5b has a mass of Mp=0.24 Mj, radius of Rp=0.91 Rj, and transits its host star with a period of P=4.7634d. The radius of HATS-5b is consistent with both theoretical and empirical models. The host star has a V band magnitude of 12.6, mass of 0.94 Msun, and radius of 0.87 Rsun. The relatively high scale height of HATS-5b, and the bright, photometrically quiet host star, make this planet a favourable target for future transmission spectroscopy follow-up observations. We reexamine the correlations in radius, equilibrium temperature, and metallicity of the close-in gas-giants, and find hot Jupiter-mass planets to exhibit the strongest dependence between radius and equilibrium temperature. We find no significant dependence in radius and metallicity for the close-in gas-giant population.Comment: 10 pages, submitted to A
    • …
    corecore