23 research outputs found

    A chromosome conformation capture ordered sequence of the barley genome

    Get PDF
    201

    Spinal cord haemangiosarcoma in one dog - Case report

    No full text
    A 5-year-old intact female Shih Tzu was presented with acute onset of hind leg paralysis. The neurologic examination revealed severe T3-L3 myelopathy. The differential diagnoses included degenerative, anomalous, traumatic, inflammatory, vascular, metabolic, and neoplastic changes. The results of the paraclinical examinations and diagnostic imaging narrowed the list of differential diagnoses and, along with the patient's deteriorating condition, led to the owner's decision to euthanise the dog. The histologic findings of the spinal cord specimens indicated a tumour of the blood vessels formed by the proliferation of endothelial cells, which may present as either capillary or cavernous structures. In this case, the tumour was a capillary-type haemangiosarcoma. The primary site of proliferation could not be determined in this case because no mass formation was noted while performing the necropsy

    Sequence organization and evolutionary dynamics of Brachypodium-specific centromere retrotransposons

    Get PDF
    Citation: Qi, L., . . . Gill, B. (2013). Sequence organization and evolutionary dynamics of Brachypodium-specific centromere retrotransposons. Chromosome Research, 21, 507-521. https://doi.org/10.1007/s10577-013-9378-4Brachypodium distachyon is a wild annual grass belonging to the Pooideae, more closely related to wheat, barley, and forage grasses than rice and maize. As an experimental model, the completed genome sequence of B. distachyon provides a unique opportunity to study centromere evolution during the speciation of grasses. Centromeric satellite sequences have been identified in B. distachyon, but little is known about centromeric retrotransposons in this species. In the present study, bacterial artificial chromosome (BAC)-fluorescence in situ hybridization was conducted in maize, rice, barley, wheat, and rye using B. distachyon (Bd) centromere-specific BAC clones. Eight Bd centromeric BAC clones gave no detectable fluorescence in situ hybridization (FISH) signals on the chromosomes of rice and maize, and three of them also did not yield any FISH signals in barley, wheat, and rye. In addition, four of five Triticeae centromeric BAC clones did not hybridize to the B. distachyon centromeres, implying certain unique features of Brachypodium centromeres. Analysis of Brachypodium centromeric BAC sequences identified a long terminal repeat (LTR)-centromere retrotransposon of B. distachyon (CRBd1). This element was found in high copy number accounting for 1.6 % of the B. distachyon genome, and is enriched in Brachypodium centromeric regions. CRBd1 accumulated in active centromeres, but was lost from inactive ones. The LTR of CRBd1 appears to be specific to B. distachyon centromeres. These results reveal different evolutionary events of this retrotransposon family across grass species

    The genomic organization of retrotransposons in Brassica oleracea

    No full text
    We have investigated the copy numbers and genomic organization of five representative reverse transcriptase domains from retrotransposons in Brassica oleracea. Two non-homologous Pseudoviridae (Ty1/copia-like) elements, two Metaviridae (Ty3/gypsy-like) elements (one related to the Athila family) and one Retroposinae (LINE) element were hybridized to a gridded BAC library, “BoB”. The results indicated that the individual LTR retrotransposons (copia and gypsy-like) were represented by between 90 and 320 copies in the haploid genome, with only evidence of a single location for the LINE. Sequence analysis of the same elements against genome survey sequence gave estimates of between 60 and 570, but no LINE was found. There was minimal evidence for clustering between any of these retroelements: only half the randomly expected number of BACs hybridized to both LTR-retrotransposon families. Fluorescent in situ hybridization showed that each of the retroelements had a characteristic genomic distribution. Our results suggest there are preferential sites and perhaps control mechanisms for the insertion or excision of different retrotransposon groups
    corecore