52 research outputs found

    Postsocialist disability matrix

    Get PDF
    This paper explores injustices experienced by disabled people in the postsocialist countries of Central and Eastern Europe. Drawing on Nancy Fraser’s theory of social justice, the analysis proposes a ‘matrix’ that reveals the negative impact of two factors – state socialist legacy and postsocialist neoliberalization – on disabled people’s parity of participation in three dimensions of justice – economic redistribution, cultural recognition, and political representation. The legacy of state socialism has underpinned: segregated service provision; medical-productivist understanding of disability for assessment purposes; denial of disability on everyday level; and weak disability organizing. Neoliberal restructuring has resulted in: retrenchment of disability support through decentralization, austerity, and workfare; stigmatization of ‘dependency’ through the discourse of ‘welfare dependency’; responsibilization of disabled people; and depoliticization of disability organizations by restricting their activities to service provision and incorporating them in structures of tokenistic participation. The analysis is informed by reports and academic studies of disability in the postsocialist region

    Critique of deinstitutionalisation in postsocialist Central and Eastern Europe

    Get PDF
    In this paper, we explore critically deinstitutionalisation reform, focusing specifically on the postsocialist region of Central and Eastern Europe (CEE). We argue that deinstitutionalisation in postsocialist CEE has generated re-institutionalising outcomes, including renovation of existing institutions and/or creation of new, smaller settings that have nevertheless reproduced key features of institutional life. To explain these trends, we first consider the historical background of the reform, highlighting the legacy of state socialism and the effects of postsocialist neoliberalisation. We then discuss the impact of ‘external’ drivers of deinstitutionalisation in CEE, particularly the European Union and its funding, as well as human rights discourses incorporated in the UN Convention on the Rights of Persons with Disabilities. The analysis is supported by looking at the current situation in Hungary and Bulgaria through recent reports by local civil society organisations. In conclusion, we propose some definitional tactics for redirecting existing resources towards genuine community-based services

    Accelerated spreading of inviscid droplets prompted by the yielding of strongly elastic interfacial films

    Get PDF
    The complexity associated with droplets spreading on surfaces has attracted significant interest for several decades. Sustained activity results from the many natural and manufactured systems that are reliant on droplet-substrate interactions and spreading. Interfacial shear rheology and its influence on the dynamics of droplet spreading has to date received little attention. In the current study, saponin β-aescin was used as an interfacial shear rheology modifier, partitioning at the air-water interface to form a strongly elastic interface (G’/G” ∼ 6) within 1 min aging. The droplet spreading dynamics of Newtonian (water, 5 wt% ethanol, 0.0015 wt% N-dodecyl β-D-glucopyranoside) and non-Newtonian (xanthan gum) fluids were shown to proceed with a time-dependent power-law dependence of ∼0.50 and ∼0.10 (Tanner’s law) in the inertial and viscous regimes of spreading, respectively. However, water droplets stabilized by saponin β-aescin were shown to accelerate droplet spreading in the inertial regime with a depreciating time-dependent power-law of 1.05 and 0.61, eventually exhibiting a power-law dependence of ∼ 0.10 in the viscous regime of spreading. The accelerated rate of spreading is attributed to the potential energy as the interfacial film yields as well as relaxation of the crumpled interfacial film during spreading. Even though the strongly elastic film ruptures to promote droplet spreading, interfacial elasticity is retained enhancing the dampening of droplet oscillations following detachment from the dispensing capillary

    Remarkably high surface visco-elasticity of adsorption layers of triterpenoid saponins

    No full text
    Saponins are natural surfactants, with molecules composed of a hydrophobic steroid or triterpenoid group, and one or several hydrophilic oligosaccharide chains attached to this group. Saponins are used in cosmetic, food and pharmaceutical products, due to their excellent ability to stabilize emulsions and foams, and to solubilize bulky hydrophobic molecules. The foam and emulsion applications call for a better understanding of the surface properties of saponin adsorption layers, including their rheological properties. Of particular interest is the relation between the molecular structure of the various saponins and their surface properties. Here, we study a series of eight triterpenoid and three steroid saponins, with different numbers of oligosaccharide chains. The surface rheological properties of adsorption layers at the air-water interface, subjected to creep-recovery and oscillatory shear deformations, are investigated. The experiments showed that all steroid saponins exhibited no shear elasticity and had negligible surface viscosity. In contrast, most of the triterpenoid saponins showed complex visco-elastic behavior with extremely high elastic modulus (up to 1100 mN m(-1)) and viscosity (130 N s m(-1)). Although the magnitude of the surface modulus differed significantly for the various saponins, they all shared qualitatively similar rheological properties: (1) the elastic modulus was much higher than the viscous one. (2) Up to a certain critical value of surface stress, sC, the single master curve described the dependence of the creep compliance versus time. This rheological response was described well by the compound Voigt model. (3) On increasing the surface stress above sC, the compliance decreased with the applied stress, and eventually, all layers became purely viscous, indicating a loss in the layer structure, responsible for the elastic properties. The saponin extracts, showing the highest elastic moduli, were those of Escin, Tea saponins and Berry saponins, all containing predominantly monodesmosidic triterpenoid saponins. Similarly, a high surface modulus was measured for Ginsenosides extracts, containing bidesmosidic triterpenoid saponins with short sugar chains

    Role of the hydrophobic phase for the unique rheologica properties of saponin adsorption layers

    No full text
    Saponins are a diverse class of natural, plant derived surfactants, with peculiar molecular structure consisting of a hydrophobic scaffold and one or several hydrophilic oligosaccharide chains. Saponins have strong surface activity and are used as natural emulsifiers and foaming agents in food and beverage, pharmaceutical, ore processing, and other industries. Many saponins form adsorption layers at the air–water interface with extremely high surface elasticity and viscosity. The molecular origin of the observed unique interfacial visco-elasticity of saponin adsorption layers is of great interest from both scientific and application viewpoints. In the current study we demonstrate that the hydrophobic phase in contact with water has a very strong effect on the interfacial properties of saponins and that the interfacial elasticity and viscosity of the saponin adsorption layers decrease in the order: air > hexadecane » tricaprylin. The molecular mechanisms behind these trends are analyzed and discussed in the context of the general structure of the surfactant adsorption layers at various nonpolar phase–water interfaces

    Surface properties of adsorption layers formed from triterpenoid and steroid saponins

    No full text
    Saponins are natural surfactants with non-trivial surface and aggregation properties which find numerous important applications in several areas (food, pharma, cosmetic and others). In the current paper we study the surface properties of ten saponin extracts, having different molecular structure with respect to the type of their hydrophobic fragment (triterpenoid or steroid aglycone) and the number of sugar chains (1 to 3). We found that the triterpenoid saponins Escin, Tea Saponin and Ginsenosides have area per molecule in the range between 0.5 and 0.7nm2, and the adsorbed molecules are orientated perpendicularly to the interface. The comparison of the experimentally measured surface elasticities with theoretically estimated ones shows that the saponins with very high dilatational and shear elasticities (up to 2000mN/m) have molecular interaction parameter in the adsorption layers which is above the threshold value for two-dimensional phase transition. In other words, the highly elastic layers are in surface condensed state, due to strong attraction between the adsorbed molecules. Furthermore, these adsorption layers have non-linear rheological response upon expansion and contraction, even at relatively small deformation. Layers from the other studied saponins (steroids and crude mixtures of triterpenoid saponins), which are unable to form strong intermolecular bonds within the adsorption layer, have zero shear elasticity and viscosity and low dilatational elasticity and viscosity, comparable in magnitude to those reported in literature for protein adsorption layers. The comparison of the results, obtained by several independent experimental methods, allowed us to formulate the conditions under which the results from different interfacial rheology tests could be compared, despite the complex non-linear response of the saponin adsorption layers.</p

    Design and Simulation of Advanced Control for a Pulp Digester House

    No full text
    corecore