1,538 research outputs found

    A Heavy Fermion Can Create a Soliton: A 1+1 Dimensional Example

    Get PDF
    We show that quantum effects can stabilize a soliton in a model with no soliton at the classical level. The model has a scalar field chirally coupled to a fermion in 1+1 dimensions. We use a formalism that allows us to calculate the exact one loop fermion contribution to the effective energy for a spatially varying scalar background. This energy includes the contribution from counterterms fixed in the perturbative sector of the theory. The resulting energy is therefore finite and unambiguous. A variational search then yields a fermion number one configuration whose energy is below that of a single free fermion.Comment: 10 pages, RevTeX, 2 figures composed from 4 .eps files; v2: fixed minor errors, added reference; v3: corrected reference added in v

    Light Scalar Mesons as Manifestation of Spontaneously Broken Chiral Symmetry

    Full text link
    Attention is paid to the production mechanisms of light scalars that reveal their nature. We reveal the chiral shielding of the \sigma(600) meson. We show that the kaon loop mechanism of the \phi radiative decays, ratified by experiment, points to the four-quark nature of light scalars. We show also that the light scalars are produced in the two photon collisions via four-quark transitions in contrast to the classic P wave tensor q\bar q mesons that are produced via two-quark transitions γγ→qqˉ\gamma\gamma\to q\bar q. The history of spontaneous breaking of symmetry in quantum physics is discussed in Appendix.Comment: Talk at The International Bogolyubov Conference "Problems of Theoretical and Mathematical Physics" devoted to the 100th anniversary of N.N.Bogolyubov's birth that was held from August 21 to August 22,2009 in Moscow at the Russian Academy of Sciences (RAS) and from August 23 to August 27, 2009 in Dubna at the Joint Institute for Nuclear Research (JINR

    Neutrino scattering off pair-breaking and collective excitations in superfluid neutron matter and in color-flavor locked quark matter

    Full text link
    We calculate the correlation functions needed to describe the linear response of superfluid matter, and go on to calculate the differential cross section for neutral-current neutrino scattering in superfluid neutron matter and in color-flavor locked quark matter (CFL). We report the first calculation of scattering rates that includes neutrino interactions with both pair-breaking excitations and low-lying collective excitations (Goldstone modes). Our results apply both above and below the critical temperature, allowing use in simulations of neutrino transport in supernovae and neutron stars.Comment: 22 pages, 9 figure

    Hartree-Fock and Many-Body Perturbation Theory with Correlated Realistic NN-Interactions

    Full text link
    We employ correlated realistic nucleon-nucleon interactions for the description of nuclear ground states throughout the nuclear chart within the Hartree-Fock approximation. The crucial short-range central and tensor correlations, which are induced by the realistic interaction and cannot be described by the Hartree-Fock many-body state itself, are included explicitly by a state-independent unitary transformation in the framework of the unitary correlation operator method (UCOM). Using the correlated realistic interaction V_UCOM resulting from the Argonne V18 potential, bound nuclei are obtained already on the Hartree-Fock level. However, the binding energies are smaller than the experimental values because long-range correlations have not been accounted for. Their inclusion by means of many-body perturbation theory leads to a remarkable agreement with experimental binding energies over the whole mass range from He-4 to Pb-208, even far off the valley of stability. The observed perturbative character of the residual long-range correlations and the apparently small net effect of three-body forces provides promising perspectives for a unified nuclear structure description.Comment: 14 pages, 8 figures, 3 tables, using REVTEX

    Cloning a new cytochrome P450 isoform (CYP356A1) from oyster Crassostrea gigas

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Environmental Research 66 (2008): 15-18, doi:10.1016/j.marenvres.2008.02.010.We have cloned the full-length cDNA of the first member of a new cytochrome P450 (CYP) family from the Pacific oyster Crassostrea gigas. This new CYP gene was obtained based on an initial 331 bp fragment previously identified among the list of the differentially expressed genes in oysters exposed to untreated domestic sewage. The full-length CYP has an open reading frame of 1500 bp and based on its deduced aminoacid sequence was classified as a member of a new subfamily, CYP356A1. A phylogenetic analysis showed that CYP356A1 is closely related to members of the CYP17 and CYP1 subfamilies. Semiquantitative RT-PCR was performed to analyze the CYP356A1 expression in different tissues of the oyster (digestive gland, gill, mantle and adductor muscle). Results showed slightly higher CYP356A1 expression in digestive gland and mantle, than the other tissues, indicating a possible role of the CYP356A1 in the xenobiotic biotransformation and/or steroid metabolism.This work was supported by CNPq-Universal to ACDB. ACDB is recipient of Productivity Fellowship from CNPq

    Study of the ground-state energy of 40Ca with the CD-Bonn nucleon-nucleon potential

    Full text link
    We have calculated the ground-state energy of the doubly-magic nucleus 40Ca within the framework of the Goldstone expansion using the CD-Bonn nucleon-nucleon potential. The short-range repulsion of this potential has been renormalized by integrating out its high-momentum components so as to derive a low-momentum potential V-low-k defined up to a cutoff momentum Lambda. A simple criterion has been employed to establish a connection between this cutoff momentum and the size of the two-nucleon model space in the harmonic oscillator basis. This model-space truncation approach provides a reliable way to renormalize the free nucleon-nucleon potential preserving its many-body physics. The role of the 3p-3h and 4p-4h excitations in the description of the ground state of 40Ca is discussed.Comment: 4 pages, 1 figure, 1 table, to be published in Physical Review

    Fractional and Integer Charges from Levinson's Theorem

    Get PDF
    We compute fractional and integer fermion quantum numbers of static background field configurations using phase shifts and Levinson's theorem. By extending fermionic scattering theory to arbitrary dimensions, we implement dimensional regularization in a 1+1 dimensional gauge theory. We demonstrate that this regularization procedure automatically eliminates the anomaly in the vector current that a naive regulator would produce. We also apply these techniques to bag models in one and three dimensions.Comment: 16 pages, uses RevTex, 1 figure; v2: minor correction

    Nuclear Structure Calculations with Low-Momentum Potentials in a Model Space Truncation Approach

    Full text link
    We have calculated the ground-state energy of the doubly magic nuclei 4He, 16O and 40Ca within the framework of the Goldstone expansion starting from various modern nucleon-nucleon potentials. The short-range repulsion of these potentials has been renormalized by constructing a low-momentum potential V-low-k. We have studied the connection between the cutoff momemtum Lambda and the size of the harmonic oscillator space employed in the calculations. We have found a fast convergence of the results with a limited number of oscillator quanta.Comment: 6 pages, 8 figures, to be published on Physical Review

    Brueckner-Goldstone perturbation theory for the half-filled Hubbard model in infinite dimensions

    Full text link
    We use Brueckner-Goldstone perturbation theory to calculate the ground-state energy of the half-filled Hubbard model in infinite dimensions up to fourth order in the Hubbard interaction. We obtain the momentum distribution as a functional derivative of the ground-state energy with respect to the bare dispersion relation. The resulting expressions agree with those from Rayleigh-Schroedinger perturbation theory. Our results for the momentum distribution and the quasi-particle weight agree very well with those obtained earlier from Feynman-Dyson perturbation theory for the single-particle self-energy. We give the correct fourth-order coefficient in the ground-state energy which was not calculated accurately enough from Feynman-Dyson theory due to the insufficient accuracy of the data for the self-energy, and find a good agreement with recent estimates from Quantum Monte-Carlo calculations.Comment: 15 pages, 8 fugures, submitted to JSTA
    • …
    corecore