798 research outputs found

    Exploitation of a natural pasture by wild horses: comparison between nutritive characteristics of the land and the nutrient requirements of the herds over a 2-year period

    Get PDF
    In the Molise region (Italy), some autochthonous populations are still bred and, between them, some wild horses named 'Pentro horses.' The breeding area is a natural pasture. It is 2200 ha extended including a broad plane surrounded by wooden hills. The aim of this research was to determine the nutritional characteristics of this area over a 2-year period to improve the management of the herd and to define the stocking rate in relation to the forage production in terms of production and quality. The forage samples were collected over two successive years during the grazing period (May to October) from five experimental areas and analysed for dry matter (DM), organic matter (OM), crude protein (CP), crude fibre (CF), neutral-detergent fibre (NDF), acid-detergent fibre (ADF), acid-detergent lignin (ADL) and gross energy (GE). Horse feed units (HFU) and horse-digestible crude protein (HDCP) were also predicted. Data were analysed with a one-way ANOVA test using month and area as factors. The DM, HFU and HDCP total production was determined to be compared with the total nutrient requirements of the herds from May to October. The results show that seasonal and yearly climatic variations significantly affect chemical composition and nutritive value of the pasture. The parameters most influenced were DM, CP, ADF and to a less extent NDF, while OM, ADL and GE show smaller differences during the observed period. The results show a low production per ha; nevertheless, because of the low stocking rate (0.3 to 0.6 head per ha), nutrient production meets the nutrient requirements of the horses regarding DM and energy. The differences among the areas have to be ascribed to the different botanical compositions and to the different draining capacity of the soil, and also in this case the greatest variations are for DM, CP and ADF

    Synthesis, self-assembly-behavior and biomolecular recognition properties of thyminyl dipeptides

    Get PDF
    This article describes the synthesis of Thy-(Phe-Phe) and Thy-(Tyr-Tyr), two thymine-bearing dipeptides based on L-phenylalanine and L-tyrosine, the circular dichroism (CD), UV and dynamic light scattering (DLS) characterization of their self-assemblies, and a CD study of their interaction with nucleic acids (using homoadenine DNA and RNA) and serum proteins (employing BSA as model protein). DLS studies, alongside with CD and UV investigations conducted on aqueous solutions of the derivatives under different concentration and temperature conditions, showed the formation of extensive molecular architectures with hydrodynamic mean diameters higher than 300 nm, with Thy-(Tyr-Tyr) forming at pH=7.5 particularly large and stable networks, involving multiple units, connected by H-bonding, aromatic and hydrophobic interactions. Finally, the findings of our study suggested that Thy-(Phe-Phe) and Thy-(Tyr-Tyr), very stable in human serum, were able to bind BSA protein altering its secondary structure

    Sox10 contributes to the balance of fate choice in dorsal root ganglion progenitors

    Get PDF
    The development of functional peripheral ganglia requires a balance of specification of both neuronal and glial components. In the developing dorsal root ganglia (DRGs), these compo- nents form from partially-restricted bipotent neuroglial precursors derived from the neural crest. Work in mouse and chick has identified several factors, including Delta/Notch signal- ing, required for specification of a balance of these components. We have previously shown in zebrafish that the Sry-related HMG domain transcription factor, Sox10, plays an unex- pected, but crucial, role in sensory neuron fate specification in vivo. In the same study we described a novel Sox10 mutant allele, sox10baz1, in which sensory neuron numbers are elevated above those of wild-types. Here we investigate the origin of this neurogenic pheno- type. We demonstrate that the supernumerary neurons are sensory neurons, and that enteric and sympathetic neurons are almost absent just as in classical sox10 null alleles; peripheral glial development is also severely abrogated in a manner similar to other sox10 mutant alleles. Examination of proliferation and apoptosis in the developing DRG reveals very low levels of both processes in wild-type and sox10baz1, excluding changes in the bal- ance of these as an explanation for the overproduction of sensory neurons. Using chemical inhibition of Delta-Notch-Notch signaling we demonstrate that in embryonic zebrafish, as in mouse and chick, lateral inhibition during the phase of trunk DRG development is required to achieve a balance between glial and neuronal numbers. Importantly, however, we show that this mechanism is insufficient to explain quantitative aspects of the baz1 phenotype. The Sox10(baz1) protein shows a single amino acid substitution in the DNA binding HMG domain; structural analysis indicates that this change is likely to result in reduced flexibility in the HMG domain, consistent with sequence-specific modification of Sox10 binding to DNA. Unlike other Sox10 mutant proteins, Sox10(baz1) retains an ability to drive neurogenin1 transcription. We show that overexpression of neurogenin1 is sufficient to produce supernu- merary DRG sensory neurons in a wild-type background, and can rescue the sensory neu- ron phenotype of sox10 morphants in a manner closely resembling the baz1 phenotype. We conclude that an imbalance of neuronal and glial fate specification results from the Sox10 (baz1) protein\u2019s unique ability to drive sensory neuron specification whilst failing to drive glial development. The sox10baz1 phenotype reveals for the first time that a Notch-dependent lat- eral inhibition mechanism is not sufficient to fully explain the balance of neurons and glia in the developing DRGs, and that a second Sox10-dependent mechanism is necessary. Sox10 is thus a key transcription factor in achieving the balance of sensory neuronal and glial fates

    Exploring the Relationship between G-Quadruplex Nucleic Acids and Plants: From Plant G-Quadruplex Function to Phytochemical G4 Ligands with Pharmaceutic Potential

    Get PDF
    G-quadruplex (G4) oligonucleotides are higher-order DNA and RNA secondary structures of enormous relevance due to their implication in several biological processes and pathological states in different organisms. Strategies aiming at modulating human G4 structures and their interrelated functions are first-line approaches in modern research aiming at finding new potential anticancer treatments or G4-based aptamers for various biomedical and biotechnological applications. Plants offer a cornucopia of phytocompounds that, in many cases, are effective in binding and modulating the thermal stability of G4s and, on the other hand, contain almost unexplored G4 motifs in their genome that could inspire new biotechnological strategies. Herein, we describe some G4 structures found in plants, summarizing the existing knowledge of their functions and biological role. Moreover, we review some of the most promising G4 ligands isolated from vegetal sources and report on the known relationships between such phytochemicals and G4-mediated biological processes that make them potential leads in the pharmaceutical sector

    Nucleic Acids as Biotools at the Interface between Chemistry and Nanomedicine in the COVID-19 Era

    Get PDF
    The recent development of mRNA vaccines against the SARS-CoV-2 infection has turned the spotlight on the potential of nucleic acids as innovative prophylactic agents and as diagnostic and therapeutic tools. Until now, their use has been severely limited by their reduced half-life in the biological environment and the difficulties related to their transport to target cells. These limiting aspects can now be overcome by resorting to chemical modifications in the drug and using appropriate nanocarriers, respectively. Oligonucleotides can interact with complementary sequences of nucleic acid targets, forming stable complexes and determining their loss of function. An alternative strategy uses nucleic acid aptamers that, like the antibodies, bind to specific proteins to modulate their activity. In this review, the authors will examine the recent literature on nucleic acids-based strategies in the COVID-19 era, focusing the attention on their applications for the prophylaxis of COVID-19, but also on antisense- and aptamer-based strategies directed to the diagnosis and therapy of the coronavirus pandemic

    Suspended monolayer graphene under true uniaxial deformation

    Get PDF
    2D crystals, such as graphene, exhibit the higher strength and stiffness of any other known man-made or natural material. So far, this assertion has been primarily based on modelling predictions and on bending experiments in combination with pertinent modelling. True uniaxial loading of suspended graphene is not easy to accomplish; however such an experiment is of paramount importance in order to assess the intrinsic properties of graphene without the influence of an underlying substrate. In this work we report on uniaxial tension of graphene up to moderate strains of 0.8% ca.. This has been made possible by sandwiching the graphene flake between two polymethylmethacrylate (PMMA) layers and by suspending its central part by the removal of a section of PMMA with e-beam lithography. True uniaxial deformation is confirmed by the measured large phonon shifts with strain by Raman spectroscopy and the indication of lateral buckling (similar to what is observed for thin macroscopic membranes under tension). Finally, we also report on how the stress is transferred to the suspended specimen through the adhesive grips and determine the value of interfacial shear stress that is required for efficient axial loading in such a system
    • …
    corecore