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1. Introduction 

 

Tissue engineering aims to restore damaged tissues and/or functions in the human body by 

stimulating the physiological mechanism of regeneration and repair. Bioactive glasses (BGs) and 

glass-ceramics (BGCs) have a high potential in the field of regenerative medicine as regards both 

hard-tissue engineering and, more recently, soft-tissue engineering. In the early 1970s, the concept 

of bioactivity was defined as the ability of certain materials to bond to bone and to stimulate 

osteogenesis [1]; since then, BGs began to be proposed and investigated for bone implants 

applications. The first generation of BGs involved silicate-based glasses, in which silicon dioxide 

(SiO2) acts as a network former, and other oxides, such as Na2O, and CaO, were added to the 

composition as network modifiers. Bioglass
®
, belonging to the SiO2–Na2O–CaO–P2O5 system, was 

the first glass able to form an interfacial bond with living bone after implantation [2]. Since then, 

more complex compositions were designed to enhance the bioactivity of the material.   

In the last decade, one of the major challenges of tissue engineering has been the synthesis of 

materials able to safely dissolve once they have performed their function, leaving the body to 

remodel the tissue to its natural form. To this aim a novel group of glasses involving P2O5 as 

network former have been proposed; the asymmetry of the [PO4] tetrahedron unit, that represents 

the phosphate-based glass structural unit, is believed to be the origin of their low durability, 

together with the ease of hydration of the P–O–P bonds  [3]. Phosphate glasses (PGs) have a great 

potential because their solubility is strongly dependent on their composition; their degradation rate 

can be tailored by adding metal oxides, such as TiO2 [4-5], CuO [6] and Fe2O3 [7-8] to the glass 

composition. PGs dissolves congruently throughout the whole process [9]. The two interdependent 

steps that take place during glass dissolution are the hydration reaction, with a Na–H ion exchange, 

and the network breakage in the hydrated layer due to the destruction of the P–O–P bonds [3]. PGs 

have been widely studied as a controlled release vehicle of antibacterial ions, such as silver, copper, 
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zinc, gallium [10] and have been also studied for application in the field of bone tissue regeneration 

in the form of powder or porous scaffold, alone or with polymers in composite materials [4,11].  

Nerve guide of PGs, like tubes or mesh of non-woven fibres, were developed and tested in vivo [12-

13] with good results and 3-D constructs for the repair of the muscular tissue have been also studied 

[14]. 

In this work, a novel phosphate-based glass-ceramic (GC-ICEL) was synthesised and characterized 

in terms of crystalline structure, solubility and biological compatibility. It is known that the events 

occurring at the glass surface, i.e. adsorption of molecules and growth factors, lead to integrin 

activation and cell adhesion [15]. As described for other glass substrates [16], the immersion of GC-

ICEL in α-minimum essential medium (α-MEM) may trigger a continuous ion-exchange between 

the surface and the solution. The aim of the cell-based studies presented in this work was to 

evaluate the effect of GC-ICEL on adhesion, proliferation and gene expression of osteoblastic 

markers of human marrow-derived stromal cells (hMSCs). 

 

2. Materials and Methods 

 

2.1. Synthesis of glass 

 

The starting phosphate-based glass belonged to the P2O5–SiO2–CaO–MgO–Na2O–K2O system 

(ICEL) [17], and had the following molar composition: 45% P2O5, 3% SiO2, 26% CaO, 7% MgO, 

15% Na2O, 4% K2O. ICEL was prepared by melting the raw products, i.e. (NH4)2HPO4, SiO2, 

Ca3(PO4)2, Mg3(PO4)2·8H2O, Na3PO4·12H2O and K2HPO4, in a platinum crucible at 1,200 °C in air 

for 1 h to ensure homogeneity (heating rate set at 10 °C∙min
-1

). The molten glass was cast into 

moulds to produce bars that were cut by a diamond rotating wheel (Struers Accutom 5). The glass 

pieces were ground by ball milling to obtain powders which were sieved below 30 μm. 
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2.2. Preparation of glass-ceramic samples 

 

Massive glass-ceramic ICEL (GC-ICEL) samples were obtained via uniaxial dry pressing of as-

poured glass powders sieved below 30 μm and by a suitable thermal treatment. Both disk-shaped 

and bar-shaped “green” compacts were produced depending on the end use. Specifically, the disks 

were used for GC-ICEL morphological, structural and in vitro characterization, whereas the bars 

were cut into slices for the biological assessment. Both samples (disks and slices) were produced 

with surface area of ~50 mm
2
 and thickness of ~2 mm. The applied pressure and time were set in 

order to obtain crack-free “greens”; the optimal conditions were identified with 135 MPa/10 s for 

the bars and with 90 MPa/60 s for the disks. The “green” bodies were thermally treated at 610 °C 

for 3 h to sinter ICEL powders (heating and cooling rate were set at 5 and 10 °C∙min
-1

, 

respectively). The sintering conditions were set on the basis of hot stage microscopy and thermal 

analysis data, reported elsewhere [17], to achieve an effective densification of the samples. 

 

2.3. Evaluation of GC-ICEL solubility 

 

Solubility tests were performed on GC-ICEL disks to evaluate the erosion rate and the dissolution 

kinetics of the material. The study was developed according to the ISO standard [18], by soaking 

the samples for different time frames in 25 ml of three media mimicking, with various 

approximation degrees, the biological fluids: distilled water, Tris-HCl and acellular simulated body 

fluid (SBF) [19]. Specifically, GC-ICEL samples were maintained at 37 °C in polyethylene bottles; 

a refresh of the solutions occurred every 48 h to approximately simulate fluid circulation in the 

human body.  

GC-ICEL solubility was assessed by calculating the weight loss of the samples after 7 days and 1, 

2, 3 months of soaking in the three different media. After soaking the samples were extracted from 
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the solutions, dried at room temperature for 24 h and finally weighted. The per cent weight loss ΛW 

(%) was assessed as     

100
0

0 








 


W

WW s
W , 

where W0 and Ws are, respectively, the scaffold weight before and after soaking. 

As the solubility is affected by the surface area, the weight loss per unit area ΛS (mg∙cm
-2

) was 

assessed as  

S

WW s
S


 0 , 

where S (cm
2
) is the external surface exposed to the solution.  

The tests were performed on triplicate samples for every time frame; the reported values of weight 

loss are an average of the acquired data. During soaking, the variations of pH in the solutions, due 

to ion-leaching phenomena, were daily monitored. GC-ICEL samples were investigated before and 

after soaking in distilled water, Tris-HCl and SBF by means of wide-angle (2θ within 10-70°) X-ray 

diffraction (XRD; X’Pert Philips diffractometer with Bragg Brentano camera geometry and Cu Kα 

incident radiation). In addition, the samples underwent scanning electron microscopy (SEM) and 

compositional analysis by using a Philips 525M SEM apparatus equipped with Edax Philips 9100 

for energy dispersive spectroscopy (EDS), to evaluate the modifications occurring on their surface 

owing to erosion phenomena. 

 

2.4. Biological tests 

2.4.1. Sample preparation  

The samples were weighed, in dry conditions, prior to cell seeding and after cell removal at each 

time points, to verify any weight loss during in vitro testing. Sterilization was obtained by soaking 

the samples first in 70% ethanol (2 h) and then in 1% antibiotic/antimycotic in phosphate-buffered 
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saline (PBS) (2 h). Finally, a pre-wetting step in 10% serum-added medium (1.5 h) was performed 

to improve cells adhesion. 

2.4.2. Cell isolation  

hMSCs were isolated from bone marrow tissue during total hip replacement surgery. Written 

consent from patients was obtained, and the tissue collection was approved by the Institutional 

Ethical Committee. Heparinized femoral-shaft marrow was layered onto Ficoll gradient and 

mononuclear cells (MNCs) were collected at the interface after centrifugation at 4000×g for 0.5 h. 

MNCs were plated in polystyrene flasks and incubated with α-MEM, 10% foetal bovine serum, 2 

mM glutamine and 1% antibiotic (penicillin/streptomycin) solution (standard medium) at 37°C in 

5% CO2, and non-adherent cells were removed after 4 days. Adherent hMSCs were sub-cultured 

with standard medium added with 50 μg∙ml
-1

 ascorbate-2 phosphate and splitted at sub-confluence. 

Second passage cells were used for GC-ICEL experiments. 

2.4.3. Cell seeding and culture 

Cells were seeded at a density of 2.5∙10
4
 cells∙cm

-2
 by applying 25 μl of cell suspension to the 

samples and incubated at 37 °C for 1 h in wet chamber to allow for cell attachment; then 1 ml of 

medium was added to fill the well. hMSCs, seeded in tissue culture plastic (TCPS) at 2.5∙10
4 

cell∙cm
-2

 in 24-well plates, provided the controls. Cell seeding efficiency, that is the number of 

attached cells expressed as percent of the cells seeded, was calculated 24 h after plating using 

Picogreen assay; the mean DNA content of our cells was defined by interpolation of the values on a 

reference curve. Then the number of cells was calculated from the Picogreen test results. Cells were 

fed twice a week with osteogenic medium, i.e. standard medium plus 10
-8

 M dexamethasone and 10 

mM β-glycerophosphate. At 1, 7 and 14 days, morphological, biochemical and molecular assays 

were performed. 
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2.4.4. Morphological assays 

Cell morphology of hMSCs on TCPS was monitored by light microscopy throughout the culture 

period. In order to investigate cell morphology and spreading on samples, hMSC were stained with 

two different dyes and observed by fluorescence microscopy (Nikon). Cytoskeleton was visualized 

following staining of actin filaments with rhodamine-phalloidin fluorochrome. Cells fixed with 2% 

paraformaldehyde were permeabilized with 0.5% Triton X-100. Then, the cells were incubated for 

45 minutes at room temperature in the dark with rhodamine-phalloidin 1:200 in PBS (0.06 µM, 

Molecular Probes, Eugene, OR). For acridine orange staining, following fixation in 3.7% 

paraformaldehyde and permeabilization with 0.1% Triton-X100, the cells were incubated with 6 

μg∙ml
-1

 acridine orange in EDTA-buffer. Ultrastructural analysis was carried out by SEM after the 

cell-seeded samples were treated as already described [20]. 

2.4.5. Biochemical assays 

The pH of supernatant covering the cell-seeded slices was measured 3 times a week by using 

colorimetric stripes (range 6.0-8.0, Merck). Alamar Blue test (Biosource International-CA) was 

used to asses cell viability. Briefly, Alamar Blue solution was added (10%vol.) to the culture wells. 

After incubation for 4 h at 37 °C the medium was transferred in another plate and the fluorescence 

measured using a CytoFluor 2350 plate reader (Millipore Corporation, Bedford, MA, USA) with 

490/530 nm of excitation/emission wavelength. Results were expressed as RFUs (Relative 

Fluorescence Units) normalized to the number of cells seeded. 

DNA content was quantified by Picogreen assay (Quant-IT Picogreen dsDNA, Invitrogen): cells 

were lysed with 0.01% SDS and sonication, and 10 μl of cell lysate or standard were mixed with 10 

μl of Picogreen solution in wells of a 96-well plate. The fluorescence was read at 480-520 nm with 

Cytofluor. 

Alkaline phosphatase (ALP) activity was measured by a chromogenic assay based on conversion of 

p-nitrophenyl phosphate substrate to p-nitrophenol. ALP reaction buffer was added 1:1 to cell 



 8 

lysates and the mixture incubated at 37 °C for 15 minutes. The absorption was measured at 405 nm 

with a spectrophotometer for microplates (Spectra III, Tecan, Austria), and phosphatase activity 

calculated using a calibration curve by serial dilution of p-nitrophenol standard solution. ALP 

activity was normalized to the DNA content, used as an index of the cell number. 

Synthesis of type I collagen was assessed by measuring its metabolic product released in the 

supernatant. Levels of C-terminal propeptide of type I collagen (CICP) were quantified by enzyme 

immunoassay according to the manufacturer’s instructions (Quidel corporation, Heidelberg, 

Germany). 

 

2.4.6. Molecular assay: gene expression analysis 

The gene expression analysis was performed at 24 h (only on control cells), 7 days and 14 days, by 

quantifying the transcripts of genes useful to monitor the hMSCs differentiation to osteoblasts,  as 

reported in Table 1. RNA was extracted with an RNeasy mini kit (Qiagen, GmbH, Hilden, 

Germany) and the retrotranscription was performed with MuLV Reverse Transcriptase (Applied 

Biosystems, Foster City, CA, USA). For real time polymerase chain reaction 1.5 μg of cDNA were 

amplified with the Light Cycler instrument and the Universal Probe Library system (Roche Applied 

Science, Monza, Italy) [21]. Probes and primers were selected using a web-based assay design 

software [ProbeFinder, https://www.roche-applied-science.com]. The results were expressed as a 

ratio between gene of interest and GAPDH reference gene. 

2.4.7. Statistics 

Results are reported as mean ± standard error of three separate experiments on duplicate samples 

and controls.. Differences in gene expression, DNA, and ALP content were assessed using analysis 

of variance (Kruskal-Wallis test); Mann–Whitney test was performed as a post hoc test of the 

multiple analyses, or as unpaired comparison for 2 independent variables. The level of statistical 

significance was established at p < 0.05. 

https://www.roche-applied-science.com/
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3. Results 

 

3.1. GC-ICEL 

As-poured ICEL is a completely amorphous glass, as assessed in a previous work [17]. XRD 

spectra of GC-ICEL before and after soaking in water, SBF and Tris-HCl were compared in figure 

1. The thermal treatment of sintering led to the nucleation of two crystalline phases whose main 

peaks were marked in the XRD pattern. Specifically, the two phases were identified as 

Na2Mg(PO4)3 (sodium/magnesium phosphate, PDF reference code 00-022-0477) and Ca2P2O7 

(calcium pyrophosphate, PDF reference code 00-033-0297).  

After soaking for 7 days in the three different media, a partial dissolution of Na2Mg(PO4)3 crystals 

occurs, as confirmed by the disappearance of the peaks at 2θ = 17.9° and at 2θ = 19.2° identifying 

this phase. Moreover, the intensity of the other peaks associated to this phase progressively 

decreases as the soaking time increases. After 3 months of soaking in water and Tris-HCl, this 

phenomenon is clearly evident. Concerning the samples soaked for 3 months in SBF, a different 

behaviour was observed. The peaks corresponding to GC-ICEL crystalline phases are masked by a 

newly formed phase, which exhibits a main broad peak at 2θ ≈ 32° and was identified as apatite-

like.  

SEM analysis was performed on GC-ICEL before and after soaking in water and in SBF, in order to 

evaluate the modifications occurring in the samples. Figure 2a shows as-done GC-ICEL surface at 

low magnification. A diffuse microporosity, due to the sintering process, can be seen. In figure 2b 

the glass-ceramic nature of the sample is clearly visible, as assessed by XRD data previously 

reported (figure 1). Compositional analysis assessed that the needle-shaped crystals, particularly 

evident in figure 2b, belong to calcium pyrophosphate (Ca2P2O7).  

The surface of GC-ICEL soaked for 7 days in distilled water is depicted in figure 3: a lot of pits can 

be seen due to the high surface erosion rate in water and to the dissolution of the residual 
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amorphous phase. Similar surface modifications and erosions was found on the samples soaked in 

Tris-HCl. GC-ICEL surface after 3 months in SBF is shown in figure 4; globe-shaped agglomerates 

of a newly formed phase are clearly distinguishable. EDS compositional analysis (not reported) 

revealed that this phase is constituted by Ca and P, thus demonstrating the formation of an apatite-

like layer on GC-ICEL surface and confirming the results of XRD investigations (figure 1b). In 

addition, the newly formed phase exhibits a “cauliflower” morphology very similar to that of 

hydroxyapatite (HA) formed on bioactive glasses. 

The weight losses calculated by solubility tests are reported in table 2. A more immediate 

evaluation of weight loss trend is reported as bars chart in figure 5. As expected, the erosion rate in 

the three media increases over the time, due to the progressive release of phosphates in the 

solutions. The highest dissolution is obtained in water, where the weight loss is almost  50% after 3 

months. GC-ICEL shows a weight loss of about 30% in Tris-HCl and of about 10% in SBF after 3 

months. For the GC-ICEL soaked in SBF there is an evident decrease in the weight loss rate after 

the first month. The pH changes are remarkable for the dissolution test in water (variation between 

5.20 and 7.60) and are more moderate in Tris-HCl (variation between 7.30 and 7.50) and in SBF 

(variation between 7.35-7.45). 

 

3.2. Biological tests 

 

3.2.1. GC-ICEL/medium interactions 

The pH of the culture medium was measured to check if ions released by GC-ICEL affect the 

optimal culture condition. It has been found that the pH was not significantly altered in hMSC-

seeded samples: the values, ranging between 6.8 and 7.1 during the 2 weeks-culture period, were 

well tolerated by the cells (figure 6). Regarding sample degradation in the culture medium, after 2 
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weeks of culture GC-ICEL slices had lost 5.2 % of their initial weight, with most of this loss 

occurring in the first 24 h after cell seeding. 

3.2.2. Cell adhesion at early time point 

The seeding efficiency on GC-ICEL slices was 33.8% ± 6.2%. At the early time-point hMSCs were 

observed to attach on the material surface, even if they are not yet completely elongated and 

spindle-shaped, and actin cytoskeleton, highlighted by TRITC-labelled phalloidin staining, is not 

yet organized (figure 7a,b). Cells on TCPS spread with elongated stress fibers (figure 7c,d). 

Ultrastructural analysis by SEM showed anchoring processes extended from cells and confirmed 

that, at 1 day from seeding, hMSCs are able to attach to the surface, as well as surround macropores 

and establish intercellular contacts (figure 8a,b). 

 

3.2.3. Cell viability and proliferation 

The viability of hMSCs grown on GC-ICEL slices was good. GC-ICEL did not altered the 

proliferation rate of hMSCs, that increased their metabolic activity progressively along the whole 

culture time period (figure 9a). The DNA content of control cells became higher along the culture, 

as well. On the contrary, DNA of hMSCs on samples raised during the first 7 days and then stopped 

to augment and, at 14 days, returned to the initial value (figure 9b). 

The values of quantitative parameters for cell number were found to be significantly higher on 

TCPS compared to the same time point on GC-ICEL surfaces, as expected from seeding efficiency 

results. 

The ultrastructural details of GC-ICEL were observed with or without cells (figure 10), and, as it 

can be observed, the pre-wetting treatment with serum did not alter the material surface, apart from 

the already assessed bioerosion process dissolving preferentially the residual amorphous phase and 

the Na2Mg(PO4)3 crystals. At 7 days the cells are more elongated compared to the 1-day view, grow 

in clusters, and  cytoplasmic prolongations are firmly attached to glass-ceramic asperities (figure 
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10c-d). At 14 days of culture on GC-ICEL samples the hMSCs were not confluent, and their 

number was just slightly increased compared to 7 days: this confirms the biochemical data 

indicating that cells are quiescent between the 1
st
 and 2

nd
 week of culture (figure 10e,f). 

 

3.2.4. Osteogenic differentiation 

The alkaline phosphatase activity, marker of early osteogenic differentiation, decreased over time; 

while on TCPS the more significant decrease occurred between 1 and 7 days, in hMSCs grown on 

GC-ICEL, ALP was stable in the 1
st
 week and diminished dramatically from 7 to 14 days (figure 

11a). hMSCs cultured on GC-ICEL were able to produce type I collagen and the amount increased 

progressively along the culture period (figure 11b). Cells grown on TCPS as controls showed a 

similar behaviour over time, with a statistical significant increase from 24 h to 7 days. 

Concerning gene expression, the RNA yield was lower than expected, possibly due to GC-ICEL ion 

release interfering with the procedure of RNA extraction (based on ion exchange). As a 

consequence, due to the low amount of transcripts, some results were close to the detection limit of 

the assay, and not always included in the analysis (figure 12). Expression of ALP transcript 

mirrored the protein activity and slightly decreased in samples and controls, even if the differences 

were not statistically significant, owing to the quite large standard errors of the means. Collagen 

type I gene expression showed a similar behaviour and the descendant trend was observed along the 

culture time. Finally, osteocalcin, late marker of osteodifferentiation, increased steadily from 1 to 

14 days from seeding. Differently from the other assays, the absolute values of transcripts in cells 

grown on GC-ICEL were similar or higher than TCPS controls. 

 

4. Discussion 

 

ICEL is a phosphate-based glass developed by modifying the chemical composition of a silicate-

based glass (CEL2) previously proposed and investigated [22] by the authors. The molar amounts 
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of SiO2 and P2O5 in the ICEL composition are inverted in comparison with those of CEL2, aiming 

to prepare a phosphate-based glass with small amounts of silica, without any variation both of the 

modifier oxides amounts and of the former/modifier oxides ratio, in respect to a well investigated 

composition.  

The presence of SiO2 in ICEL composition was thought to increase the glass degradation rate: in 

fact, as reported by other authors [23], low amount of SiO2 locally disrupts the P2O5-based network 

of the glass. In addition, it was demonstrated that silicon ions stimulate gene expression of 

osteoblasts in order to accelerate bone mineralization [24-26]: this can promote the in vivo 

formation of a stable interface between the glass and the surrounding living bone. 

As shown in figure 1a, the sintering treatment induced the nucleation of two crystalline phases; in 

particular, calcium pyrophosphate (Ca2P2O7) is known to be highly biocompatible and bioactive 

because, as previously reported by other authors [27,28], it can act as precursor of HA or apatite-

like phases mimicking bone mineral. The role of  (Ca2P2O7) showed to be effective in imparting 

bioactive properties to GC-ICEL by promoting the precipitation of a thick HA layer on the GC-

ICEL after soaking in SBF (figure 4). The assessed GC-ICEL bioactivity was in good accord with 

that reported by Monem et al. [29], who observed in vivo bone growth between phosphate glass-

ceramic particles implanted into rabbit femur due to the presence of β-Ca2P2O7 as the main phase. 

Furthermore,  Sun et al. [30] showed that the ionic product derived by the calcium pyrophosphate 

dissolution is able to activate genes of the bone cells and thus the presence of a pyrophosphate 

phase in GC-ICEL could be of particular interest for its application in bone tissue engineering. 

As regards the solubility of GC-ICEL, reported as bar charts in figure 5, some conlcusions can be 

drawn. The weight losses of the samples soaked in SBF are lower than those of the samples soaked 

in water and Tris-HCl, because the formation of a HA layer greatly balances the weight loss due to 

erosion. Hence, it should be noticed that the weight losses in SBF are remarkably underestimated. 

The presence of newly formed HA agglomerates was expected to affect the GC-ICEL dissolution in 

SBF: specifically, the hydrolysis of the phosphate chains was hampered as the precipitated HA 
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layer can act as a diffusion barrier of water molecules, that will reach the GC-ICEL surface in lower 

amounts and at lower rate. The precipitation of a thick HA layer and its barrier diffusion effect can 

explain the drastic decrease in the weight loss rate of GC-ICEL after the first month of soaking in 

SBF. However, the overall rate of dissolution is higher than that of HA precipitation, leading to a 

net weight loss. The GC-ICEL solubility in Tris-HCl is higher than that in SBF, but definitely lower 

than that in distilled water, in which the maximum dissolution rate was observed. These results are 

consistent with XRD and SEM investigations: in fact, both in Tris-HCl and in water no 

precipitation of HA occurred and, therefore, the weight loss was not counterbalanced. 

The pH lowering in distilled water is caused by the release of the acid dissolution product of GC-

ICEL, although the medium was refreshed every 48 h. In SBF and Tris-HCl, which are buffer 

solutions, this phenomenon is almost avoided. Since the dissolution process of phosphate glasses is 

very sensitive to pH [3], the solubility is higher in distilled water than in Tris-HCl and SBF.  

As GC-ICEL is a glass-ceramic material, apart from the congruent dissolution of the residual 

amorphous phase, the two crystalline phases showed a very different behaviour. In fact XRD results 

(reported in figure 1) showed the dissolution of the sodium/magnesium phosphate (Na2Mg(PO4)3) 

phase, while any significant difference was observed in the diffraction peaks of the calcium 

pyrophosphate (Ca2P2O7). This is due to the low solubility of this phase, as reported by other 

authors [27]. 

The tests carried out to assess the biological compatibility of GC-ICEL demonstrated that the 

material is not toxic for human marrow-derived cells, which showed a time-dependent proliferation 

on its surface over a 14-days period. Collagen and ALP production confirm that hMSCs cultured 

with the osteogenic inducers on GC-ICEL substrates go toward bone differentiation. The apparent 

contrast between the results of the viability test and the DNA content may be due to the formation 

on the GC-ICEL surface of an extracellular matrix which restricts cell proliferation to stimulate 

differentiation. This hypothesis, which is also suggested by other authors in a study on bioactive 

glass particles and osteoblasts [31], is supported by the decrease of ALP between 7 and 14 days, 
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whereas collagen steadily increase in the same period, to provide the main structural component of 

extracellular matrix (ECM). In such a condition, the cells remain metabolically active, thus 

converting Alamar blue to formazan deposits, but most of the quiescent cells are entrapped within 

the matrix and can not be easily removed from the surface. As a consequence of these effects, DNA 

measured in the cell lysate is reduced at the final endpoint. It has to be noticed that Augst et al. 

found a similar time-course of DNA production between 3 and 6 weeks in human mesenchymal 

stem cells cultured under continuous osteogenic induction in the bone region of an osteochondral 

composite, despite the condition of dynamic culture obtained with a bioreactor [32]. The decrease 

of ALP activity during culture on a bioactive glass has been observed by Jones et al. [33], who 

found a peak of ALP released by osteoblasts on a phosphate-free bioactive glass at 14 days, to be 

followed by a decrease at 21 days. A production of collagen type I by GC-ICEL seeded cells higher 

than that recorded by TCPS-seeded cells was found, too, by the same Authors. At RNA level, ALP 

transcript decreased, in agreement with ALP enzyme activity, while collagen type I gene expression 

diminished whereas protein expression was enhanced. This can be due to different half-life of the 

targeted protein compared with the respective mRNA: the protein might still be present, while the 

RNA has already been degraded [34]. The gene expression pattern of ALP, collagen I and 

osteocalcin, markers of osteogenic differentiation, suggested that hMSCs grown on GC-ICEL 

reached a late differentiation in the 14 days culture, as cells on TCPS did, confirming that they 

retain their bone-forming potential [35]. 

In summary, concerning the interaction of GC-ICEL and cells, following initial adhesion and some 

proliferation the human marrow stromal cells did not reach confluency on the glass surface. 

Different mechanisms for this behavior may be suggested, including rapid changes of the surface 

chemistry, as described in the soaking assays, which may hamper cell proliferation, or partial 

degradation of the outer layer due to frequent changes of the medium, or an unfavourable 

topography of the glass surface. The formation of an apatite-like layer, which could have been 

osteconductive, was shown after 3 months in SBF; hence, during in vitro culture the cells were 
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likely to grow on a different  substrate. Nonetheless, under osteogenic stimulus, the human marrow 

stromal cells on GC-ICEL differentiated to osteoblast lineage, as shown by ALP and collagen type I 

production, as well as gene expression for ALP, collagen I and osteocalcin. 

 

5. Conclusions 

 

GC-ICEL showed to be bioactive when soaked in a simulated body fluid as the precipitation of a 

continuous layer of HA was observed; this is probably due to the bioactive role of Ca2P2O7 crystals. 

GC-ICEL is a resorbable glass-ceramic showing a continuous dissolution of the residual amorphous 

phase and a preferential dissolution of the Na2Mg(PO4)3 crystals. Combining molecular and 

biochemical analysis, it may be suggested that, on GC-ICEL slices, a stimulation of hMSCs 

differentiation over proliferation occurred. Finally, the presence of a higher expression of bone 

related genes in cells cultured on GC-ICEL compared to cells on TCPS, confirmed the bioactivity 

of this phosphate-based glass-ceramic, and might have a stimulatory effect toward osteogenesis. 
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Tables 

 

Table 1  

List of primers and probes selected to analyse the expression of genes related to the bone cell 

differentiation. 

Gene (Symbol) -  

NCBI reference number 

 Primer sequence (5’-3’) Probe Detection 

limit (μg) 

Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) - 

NM_002046.3 

Sense 

Antisense 

agccacatcgctcagacac 

gcccaatacgaccaaatcc 

#60 3×10
-12

 

Alkaline phosphatase (ALPL) -  

NM_000478.3 

Sense 

Antisense 

gggtcagctccaccacaa 

gcattggtgttgtacgtcttg 

#52 2.1×10
-11

 

Osteocalcin (BGLAP) -  

NM_199173.2 

Sense 

Antisense 

ggcgctacctgtatcaatgg 

tcagccaactcgtcacagtc 

#1 4×10
-12

 

Type 1 collagen, alpha 1 chain (COL1A1) 

- NM_000088.3 

Sense 

Antisense 

cccctggaaagaatggagat 

aatcctcgagcaccctga 

#60 3.7×10
-13
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Table 2  

Weight losses of GC-ICEL samples after soaking in SBF, Tris-HCl and water.  

Soaking medium Weight losses 

Soaking time 

7 days 1 month 2 month 3 month 

SBF 

ΛW (%) 4.2  0.6 10.5  0.6 11.0  1.0 12.0  1.2 

ΛS (mg∙cm
-2

) 8.0  0.9 21.3  1.4 22.6  2.0 25.0  1.1 

Tris-HCl 

ΛW (%) 6.1  0.2 15.9  1.2 28.0  0.3 30.0  1.4 

ΛS (mg∙cm
-2

) 12.0  0.1 30.2  2.0 53.6  2.0 63.1  2.0 

Water 

 

ΛW (%) 29.0  2.0 47.0  1.6 48.0  0.3 49.0  1.5 

ΛS (mg∙cm
-2

) 55.7  1.8 76.5  1.5 93.5  2.0 97.3  2.0 
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Figure  

 

Fig. 1. Diffraction pattern of GC-ICEL after soaking in different aqueous media for 1 week (a) and 

3 months (b). 
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Fig. 2. Micrographs of as-done GC-ICEL at different magnifications: (a) image at 50x, (b) image at 

300x. 

 

 

Fig. 3. GC-ICEL surface after 7 days in water (magnification: 350x). 
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Fig. 4. GC-ICEL surface after 7 days in SBF (magnification: 10,000x). 
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Fig. 5. Weight loss of GC-ICEL after soaking in distilled water, Tris-HCl and SBF: assessment of 

(a) ΛW and (b) ΛS. 
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Fig. 6. Variations of medium pH during the cell culture period. 
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Fig. 7. Cell adhesion at 24 h from seeding: cell morphology by acridine orange (a,b) and 

cytoskeleton by phalloidine-TRITC (c,d) of cells grown on GC-ICEL (a,c) and TCPS (b,d). 
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Fig. 8. Cell adhesion at 24 h from seeding: SEM images of cells on GC-ICEL surfaces.  
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Fig. 9. Viability by Alamar test (a) and proliferation by Picogreen test (b) of hMSC on GC-ICEL 

substrate at different time points (RFU= Relative Fluorescence Units). * p < 0.05 on TCPS 1d vs 7d 

(a,b) and 7d vs 14d (a) 

 

 

 

 

 



 31 

Fig. 10. SEM analysis of GC-ICEL after pre-wetting treatment (a,b), at 7 days (c,d) and at 14 days 

(e,f) of culture with hMSCs.  
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Fig. 11. Osteogenic differentiation markers: alkaline phosphatase activity from lysate (a) and 

collagen I release in the culture supernatant (b). * p < 0.05 on TCPS 1d vs 7d (a,b) and on GC-ICEL 

7d vs 14d (a). 
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Fig. 12. Gene expression analysis of hMSCs cultured on GC-ICEL. 

 

 


