2,173 research outputs found

    Wormholes, naked singularities and universes of ghost radiation

    Get PDF
    Both the static and homogeneous metrics describing the spherically symmetric gravitational field of a crossflow of incoming and outgoing null dust streams are generalized for the case of the two-component ghost radiation. Static solutions represent either naked singularities or the wormholes recently found by Hayward. The critical value of the parameter separating the two possibilities is given. The wormhole is allowed to have positive mass. The homogeneous solutions are open universes.Comment: 5 pages, 10 figures, minor changes to match the published versio

    Asymmetric Swiss-cheese brane-worlds

    Full text link
    We study a brane-world cosmological scenario with local inhomogeneities represented by black holes. The brane is asymmetrically embedded into the bulk. The black strings/cigars penetrating the Friedmann brane generate a Swiss-cheese type structure. This universe forever expands and decelerates, as its general relativistic analogue. The evolution of the cosmological fluid however can proceed along four branches, two allowed to have positive energy density, one of them having the symmetric embedding limit. On this branch a future pressure singularity can arise for either (a) a difference in the cosmological constants of the cosmological and black hole brane regions (b) a difference in the left and right bulk cosmological constants. While the behaviour (a) can be avoided by a redefinition of the fluid variables, (b) establishes a critical value of the asymmetry over which the pressure singularity occurs. We introduce the pressure singularity censorship which bounds the degree of asymmetry in the bulk cosmological constant. We also show as a model independent generic feature that the asymmetry source term due to the bulk cosmological constant increases in the early universe. In order to obey the nucleosynthesis constraints, the brane tension should be constrained therefore both from below and from above. With the maximal degree of asymmetry obeying the pressure singularity censorship, the higher limit is 10 times the lower limit. The degree of asymmetry allowed by present cosmological observations is however much less, pushing the upper limit to infinity.Comment: v2: considerably expanded, 19 pages, 8 figures, many new references. Pressure singularity censorship introduced, strict limits on the possible degree of asymmetry derived. v3: model independent analysis shows that the asymmetry bounds the brane tension from above. Limits on the maximal tension set. Version published in JCA

    On the validity of the 5-dimensional Birkhoff theorem: The tale of an exceptional case

    Get PDF
    The 5-dimensional (5d) Birkhoff theorem gives the class of 5d vacuum space-times containing spatial hypersurfaces with cosmological symmetries. This theorem is violated by the 5d vacuum Gergely-Maartens (GM) space-time, which is not a representant of the above class, but contains the static Einstein brane as embedded hypersurface. We prove that the 5d Birkhoff theorem is still satisfied in a weaker sense: the GM space-time is related to the degenerated horizon metric of certain black-hole space-times of the allowed class. This result resembles the connection between the Bertotti-Robinson space-time and the horizon region of the extremal Reissner-Nordstrom space-time in general relativity.Comment: 13 pages; v2: title amended, to be published in Classical and Quantum Gravit

    Constraining Ho\v{r}ava-Lifshitz gravity by weak and strong gravitational lensing

    Get PDF
    We discuss gravitational lensing in the Kehagias-Sfetsos space-time emerging in the framework of Ho\v{r}ava-Lifshitz gravity. In weak lensing we show that there are three regimes, depending on the value of λˉ=1/ωd2\bar {\lambda}=1/\omega d^{2}, where ω\omega is the Ho\v{r}ava-Lifshitz parameter and dd characterizes the lensing geometry. When λˉ\bar {\lambda} is close to zero, light deflection typically produces two images, as in Schwarzschild lensing. For very large λˉ\bar {\lambda} the space-time approaches flatness, therefore there is only one undeflected image. In the intermediate range of λˉ\bar {\lambda} only the upper focused image is produced due to the existence of a maximal deflection angle δmax\delta_{max}, a feature inexistent in the Schwarzschild weak lensing. We also discuss the location of Einstein rings, and determine the range of the Ho\v{r}ava-Lifshitz parameter compatible with present day lensing observations. Finally, we analyze in the strong lensing regime the first two relativistic Einstein rings and determine the constraints on the parameter range to be imposed by forthcoming experiments.Comment: 11 pages, 6 figures, introductory part and reference list changed on referee request, results expanded. Published versio

    Active Galactic Nuclei with Starbursts: Sources for Ultra High Energy Cosmic Rays

    Get PDF
    Ultra high energy cosmic ray events presently show a spectrum, which we interpret here as galactic cosmic rays due to a starburst in the radio galaxy Cen A pushed up in energy by the shock of a relativistic jet. The knee feature and the particles with energy immediately higher in galactic cosmic rays then turn into the bulk of ultra high energy cosmic rays. This entails that all ultra high energy cosmic rays are heavy nuclei. This picture is viable if the majority of the observed ultra high energy events come from the radio galaxy Cen A, and are scattered by intergalactic magnetic fields across most of the sky.Comment: 4 pages, 1 figure, proceedings of "High-Energy Gamma-rays and Neutrinos from Extra-Galactic Sources", Heidelber

    Semi-transparent brane-worlds

    Full text link
    We study the evolution of a closed Friedmann brane perturbed by the Hawking radiation escaping a bulk black hole. The semi-transparent brane absorbes some of the infalling radiation, the rest being transmitted across the brane to the other bulk region. We characterize the cosmological evolution in terms of the transmission rate ϵ\epsilon. For small values of ϵ\epsilon a critical-like behaviour could be observed, when the acceleration due to radiation pressure and the deceleration induced by the increasing self-gravity of the brane roughly compensate each other, and cosmological evolution is approximately the same as without radiation. Lighter (heavier) branes than those with the critical energy density will recollapse slower (faster). This feature is obstructed at high values of ϵ\epsilon , where the overall effect of the radiation is to speed-up the recollapse. We determine the maximal value of the transmission rate for which the critical-like behaviour is observed. We also study the effect of transmission on the evolution of different source terms of the Friedmann equation. We conclude that among all semi-transparent branes the slowest recollapse occurs for light branes with total absorption.Comment: 15 pages, 8 figure

    Spin-spin effects in radiating compact binaries

    Full text link
    The dynamics of a binary system with two spinning components on an eccentric orbit is studied, with the inclusion of the spin-spin interaction terms appearing at the second post-Newtonian order. A generalized true anomaly parametrization properly describes the radial component of the motion. The average over one radial period of the magnitude of the orbital angular momentum Lˉ\bar{L} is found to have no nonradiative secular change. All spin-spin terms in the secular radiative loss of the energy and magnitude of orbital angular momentum are given in terms of Lˉ\bar{L} and other constants of the motion. Among them, self-interaction spin effects are found, representing the second post-Newtonian correction to the 3/2 post-Newtonian order Lense-Thirring approximation.Comment: 12 pages, to appear in Phys. Rev.

    Broken phase effective potential in the two-loop Phi-derivable approximation and nature of the phase transition in a scalar theory

    Get PDF
    We study the phase transition of a real scalar phi^4 theory in the two-loop Phi-derivable approximation using the imaginary time formalism, extending our previous (analytical) discussion of the Hartree approximation. We combine Fast Fourier Transform algorithms and accelerated Matsubara sums in order to achieve a high accuracy. Our results confirm and complete earlier ones obtained in the real time formalism [1] but which were less accurate due to the integration in Minkowski space and the discretization of the spectral density function. We also provide a complete and explicit discussion of the renormalization of the two-loop Phi-derivable approximation at finite temperature, both in the symmetric and in the broken phase, which was already used in the real-time approach, but never published. Our main result is that the two-loop Phi-derivable approximation suffices to cure the problem of the Hartree approximation regarding the order of the transition: the transition is of the second order type, as expected on general grounds. The corresponding critical exponents are, however, of the mean-field type. Using a "RG-improved" version of the approximation, motivated by our renormalization procedure, we find that the exponents are modified. In particular, the exponent delta, which relates the field expectation value phi to an external field h, changes from 3 to 5, getting then closer to its expected value 4.789, obtained from accurate numerical estimates [2].Comment: 54 pages, 16 figure

    Reverse engineering of linking preferences from network restructuring

    Full text link
    We provide a method to deduce the preferences governing the restructuring dynamics of a network from the observed rewiring of the edges. Our approach is applicable for systems in which the preferences can be formulated in terms of a single-vertex energy function with f(k) being the contribution of a node of degree k to the total energy, and the dynamics obeys the detailed balance. The method is first tested by Monte-Carlo simulations of restructuring graphs with known energies, then it is used to study variations of real network systems ranging from the co-authorship network of scientific publications to the asset graphs of the New York Stock Exchange. The empirical energies obtained from the restructuring can be described by a universal function f(k) -k ln(k), which is consistent with and justifies the validity of the preferential attachment rule proposed for growing networks.Comment: 7 pages, 6 figures, submitted to PR

    Disorder, spin-orbit, and interaction effects in dilute Ga1xMnxAs{\rm Ga}_{1-x}{\rm Mn}_x{\rm As}

    Full text link
    We derive an effective Hamiltonian for Ga1xMnxAs{\rm Ga}_{1-x}{\rm Mn}_x {\rm As} in the dilute limit, where Ga1xMnxAs{\rm Ga}_{1-x}{\rm Mn}_x {\rm As} can be described in terms of spin F=3/2F=3/2 polarons hopping between the {\rm Mn} sites and coupled to the local {\rm Mn} spins. We determine the parameters of our model from microscopic calculations using both a variational method and an exact diagonalization within the so-called spherical approximation. Our approach treats the extremely large Coulomb interaction in a non-perturbative way, and captures the effects of strong spin-orbit coupling and Mn positional disorder. We study the effective Hamiltonian in a mean field and variational calculation, including the effects of interactions between the holes at both zero and finite temperature. We study the resulting magnetic properties, such as the magnetization and spin disorder manifest in the generically non-collinear magnetic state. We find a well formed impurity band fairly well separated from the valence band up to xactive0.015x_{\rm active} \lesssim 0.015 for which finite size scaling studies of the participation ratios indicate a localization transition, even in the presence of strong on-site interactions, where xactive<xnomx_{\rm active}<x_{\rm nom} is the fraction of magnetically active Mn. We study the localization transition as a function of hole concentration, Mn positional disorder, and interaction strength between the holes.Comment: 15 pages, 12 figure
    corecore