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Constraining Hořava-Lifshitz gravity by weak and strong gravitational lensing
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We discuss gravitational lensing in the Kehagias-Sfetsos space-time emerging in the framework
of Hořava-Lifshitz gravity. In weak lensing we show that there are three regimes, depending on
the value of λ̄ = 1/ωd2, where ω is the Hořava-Lifshitz parameter and d characterizes the lensing
geometry. When λ̄ is close to zero, light deflection typically produces two images, as in Schwarzschild
lensing. For very large λ̄ the space-time approaches flatness, therefore there is only one undeflected
image. In the intermediate range of λ̄ only the upper focused image is produced due to the existence
of a maximal deflection angle δmax, a feature inexistent in the Schwarzschild weak lensing. We also
discuss the location of Einstein rings, and determine the range of the Hořava-Lifshitz parameter
compatible with present day lensing observations. Finally, we analyze in the strong lensing regime
the first two relativistic Einstein rings and determine the constraints on the parameter range to be
imposed by forthcoming experiments.

PACS numbers: 04.50.Kd, 95.30.Sf, 98.35.Jk, 98.62.Sb

I. INTRODUCTION

Recently, Hořava proposed a renormalizable field theoretical model which can be interpreted as a complete theory
of gravity [1, 2]. In the infrared (IR) energy scales, the theory reduces to Einstein gravity with a nonvanishing
cosmological constant. However, in the ultraviolet (UV) energy scales, the theory exhibits an anisotropic Lifshitz
scaling between time and space given by xi → lxi and t → lzt, where z is the scaling exponent. Due to the latter
anisotropic scaling the model is denoted Hořava-Lifshitz gravity in the literature. Taking into account these novel
features, Hořava-Lifshitz gravity has received a tremendous amount of attention. As the literature is rather extensive,
we refer the reader to [3] for a recent status of the theory. In addition to the formal issues, applications have been
extensively explored, ranging from cosmology, dark energy, dark matter to spherically symmetric or rotating solutions.
In fact, several versions of Hořava gravity have been proposed in the literature [3]. The relevant version for cosmology

was the introduction of an IR modification term containing an arbitrary cosmological constant, representing the
analogs of the standard Schwarzschild-(anti) de Sitter solutions, which were absent in the original Hořava model. In
this context, IR-modified Hořava gravity seems to be consistent with the current observational data [4, 5], but in
order to test its viability more observational constraints are necessary.
In this work, we discuss the position of images formed in gravitational lensing by the Kehagias-Sfetsos asymptotically

flat space-time [6] in the framework of Hořava-Lifshitz gravity. Note that gravitational lensing has become a useful
tool in measuring certain properties of gravitational fields and it has now been employed to study the large scale
structure of the Universe, to determine behavior of compact stellar objects and to search for dark matter candidates.
In what follows we advocate the idea that gravitational lensing might also be used to discriminate which of the
various gravitational theories is correct. Indeed, this approach was followed in Ref. [7] in the context of 5-dimensional
brane-world theories. In particular, by computing the bending angles and image brightness changes that occur due
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to the passage of photons past lensing object were determined to distinguish a general relativistic black hole from the
black holes predicted by an alternative theory.
We follow the approach proposed in [8], where under some physically realistic assumptions, a simple lens equation

was obtained that allows arbitrary small as well as large light deflection angles. This lens equation has been widely
used in the literature for studying strong field gravitational lensing. In fact, in the last few years there has been a
growing interest in studying weak as well as strong field lensing by a wide plethora of compact objects (we refer the
reader to Ref. [9] and references therein and to Refs. [10] for pioneering contributions on strong gravitational lensing).
This paper is organized as follows. In Sec. II, we present the basics of weak lensing in a generic static and spherically

symmetric space-time and introduce the relevant notations. In Sec. II C, the image locations in the Kehagias-Sfetsos
space-time are analyzed, in particular, the formation of Einstein rings. In Sec. III the weak lensing properties, and in
Sec. IV the strong lensing properties of the Kehagias-Sfetsos space-time are analyzed. Finally, in Sec. V we present
our conclusions.

II. WEAK LENSING IN KEHAGIAS-SFETSOS GEOMETRY

In this section we summarize the basics of weak lensing in a generic static and spherically symmetric space-time
and introduce the relevant notations. The optical axis is defined by the lensing object (L) and the observer (O ) (Fig
1). Relative to this axis and seen by O, the source (S) is under angle β, chosen positive by convention (S is always on
the upper part of the optical axis). Due to the lensing effect the image of the source (I) appears shifted away. The

angle θ = ÎOL characterizes the apparent position of the source and it is either positive (for images on the upper side
of the optical axis) or negative (for images below the optical axis). Let us denote s =sgn θ. Finally, the deflection

angle δ = ŜAI shows the change in the direction of light as compared to an undeflected trajectory. We follow the
convention of δ > 0 whenever the light is bent towards the optical axis and δ < 0 otherwise. The projection of both
S and I onto the optical axis (N) lies at distance DLS from the lensing object and at DS from the observer. The
observer-lensing object distance therefore is DL = DS −DLS. We denote d = DLDS/DLS. The impact parameter is
b = Dl sin (sθ).

FIG. 1: The lensing geometry for positive apparent angle θ and deflection angle δ.

The deflection angle δ can be calculated by comparing the two asymptotic behaviors of the null geodesics in the
Θ = π/2 plane, and it is given by the elliptic integral [11]:

δ (rmin) = 2

∫ ∞

rmin

1

r


 grr (r)

gtt(rmin)
gtt(r)

(
r

rmin

)2

− 1




1/2

dr − π , (1)

where rmin is the distance of closest approach to the lens:

dr

dϕ
(rmin) = 0 . (2)
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A. The Kehagias-Sfetsos geometry

In the framework of Hořava-Lifshitz gravity the geometry of the Kehagias-Sfetsos asymptotically flat space-time [6]
is given by the following static and spherically symmetric solution

ds2 = gtt (r) dt
2 + grr(r)dr

2 + r2
(
dΘ2 + sin2 Θdϕ2

)
, (3)

where the metric functions are provided by

− gtt(r) = 1/grr(r) = 1 + ωr2

[
1−

(
1 +

4GM

c2ωr3

)1/2
]
, (4)

c is the speed of light, G is Newton’s constant, M is the total mass of the black hole, and ω is the Hořava-Lifshitz
parameter (for details we refer the reader to [6]).
The Kehagias-Sfetsos space-time (4) presents a curvature singularity in the origin. The quantity ω0 = m2ω (m ≡

MG/c2) was found useful in [5] for confronting the space-time with Solar System tests. There are two additional
coordinate singularities at

r± = m

(
1±

√
1−

1

2ω0

)
, (5)

however they can be transformed away by introducing Eddington-Finkelstein type coordinates (v, r). The apparent
horizon at r+, defined by dr/dv = 0 (the outer boundary of the trapped region) represents an event horizon, a
property which holds in general for stationary space-times. In the limit ω0 → ∞ the outer horizon r+ approaches
the Schwarzschild horizon 2m and the inner horizon r− approaches the central singularity. Unless ω0 ≥ ωextr

0 = 1/2,
the solutions r± become imaginary, the horizon is absent and the singularity at the origin becomes naked. This does
not really represent a restriction on the range of ω0, as one can always match the Kehagias-Sfetsos solution with a
suitable interior stellar solution at some surface Rstar ≫ r+, similarly as when black hole solutions are employed to
describe stellar exteriors.
We note additional difficulties related to the black hole interpretation due to the nonrelativistic dispersion relations,

see Ref. [12] with the relevant references and discussion presented there. However, for spherically symmetric solutions
of the infrared limit of Hořava-Lifshitz gravity inside the metric horizon there is a universal horizon even in the
presence of arbitrarily high propagation speeds [13]. Ref. [14] presents an action principle for Hořava-Lifshitz gravity,
based on a Foliation Preserving Diffeomorphisms, according to which massive particles do not follow geodesic paths,
however massless particles follow null geodesics. Therefore the expression of the deflection angle (1) can be applied
for the light propagating in the Kehagias-Sfetsos space-time (4).

B. Deflection angle and lens equation

By performing a change of variable α = arcsin(rmin/r), Eq. (1) gives the deflection angle

δ (x0) = 2

∫ π/2

0

[
1 +

8
(
sin3 α− 1

) (
tan2 α+ 1

)
ω0x0

(
16ω2

0x
4
0 + 8ω0x0 sin

3 α
)1/2

+ (16ω2
0x

4
0 + 8ω0x0)

1/2

]−1/2

dα− π . (6)

When ω0 → ∞ we obtain the Schwarzschild limit of the deflection angle, increasing with x0 = rmin/2m (the distance
of closest approach to the lensing object). By contrast, the limit ω0 → 0 gives a flat space-time and a vanishing
deflection angle. With no lens mass there is also no deflection, irrespective of the value of ω, as ω0 vanishes. The
quantities m, x0 and δ (x0) have all the same sign, as in Schwarzschild lensing.
Next we replace the condition (2) with an algebraic equation, following the logic of Ref. [15]. Light-like motions in

the equatorial plane of the metric (3) are governed by the Lagrangian

2L = gtt (r) ṫ
2 + grr(r)ṙ

2 + r2ϕ̇2 = 0 , (7)

the dot representing a derivative with respect to a parameter of the curve. The cyclic coordinates t and ϕ imply two
constants of motion E = −gttṫ and L = r2ϕ̇. Reinserting these in Eq. (7) we obtain in terms of u = r−1 the equation
for the trajectory

grru
′ = g−1

tt

(
E

L

)2

− u2 , (8)
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where a prime denotes the derivative with respect to ϕ. The condition (2) gives

0 =

(
L

E

)2

gtt (rmin) + r2min . (9)

To zeroth order in the lensing the trajectory would be a straight line with rmin|leading order ≡ L/E = b = Dl sin (sθ).

Therefore we could replace the differential condition (2) with the algebraic relation

0 = gtt (rmin)D
2
L sin2 θ + r2min . (10)

The apparent angle θ, under which an image appears, is found from the Virbhadra-Ellis lens equation [9, 16]:

0 = tan θ − tanβ −
DLS

DS
[tan θ + tan (sδ − θ)] . (11)

The numerical solution of Eqs. (6), (10) and (11), together with the expressions of gtt and grr gives the loci of the
images.
The simplest example for solving the system above is for a Schwarzschild black hole −gtt = 1 − 2m/r. After

expanding the integrand in Eq. (1), and Eq. (10) in powers of ε̄, to leading order we get δ = 4m/rmin and
θ = srmin/DL, which together give δ = 4m/DL |θ|. The positions of the images are

θ1,2 =
β

2
±

√
β2

4
+ 4ε̄ . (12)

In what follows, we will need the position of images for gtt of the Kehagias-Sfetsos space-time.

C. Image locations in the Kehagias-Sfetsos space-time

We first define ε̄ = m/d, then by introducing normalized parameters θ/β and ε̄/β2 provided that β 6= 0, the
dependence of the apparent angles from β is eliminated. As for the mass, we also define a useful parameter λ̄ = 1/ωd2,
encompassing information about the Hořava-Lifshitz parameter ω and the lensing geometry. The parameters ε̄, λ̄ and
ω0 obey

ω0λ̄ = ε̄2 . (13)

Then this leads to the black hole condition

ε̄2 ≥
λ̄

2
. (14)

The weak gravity sector of the Kehagias-Sfetsos space-time occurs when −gtt − 1 ≪ 1. This can either occur close
to the Schwarzschild limit (ω → ∞) or when ω → 0 (thus λ̄ → ∞). The latter condition renders the geometry outside
the black hole parameter region (large λ̄ and finite m, thus Eq. (14) is not obeyed). In this limit the Kehagias-Sfetsos
space-time becomes flat without approximating Schwarzschild, but rather a naked singularity (unless matched with a
stellar solution replacing the central region).
Negative mass parameters are allowed only for 1 + 4m/ωr3 ≥ 0, thus for

λ̄ ≤ λ̄crit =
1

4

(rmin

d

)3

(−ε̄)−1 . (15)

1. Einstein rings

The Einstein ring with radius θE ≥ 0 occurs when the source, lens and observer are on the same axis. The
numerical solution of Eqs. (6), (10) and (11) with the conditions β = 0 and s = 1 gives (θE , rmin/d, δ) as functions of
the parameters λ̄ and ε̄. The radius of the ring is represented on Fig. 2 for the particular configuration DLS/DL = 2.
For λ̄ → 0 we get the Schwarzschild lensing (the half-parabola shaped section of the surface with the largest opening
with respect to the θ = 0 plane). As λ̄ increases, the opening of the half-parabola decreases, indicating the weakening
of gravity (for a given ε̄). At sufficiently large λ̄ the contribution of ε̄ becomes irrelevant and the geometry flattens,
rendering the radius of the Einstein ring θE → 0. For a given mass and lensing geometry, the Einstein angles in the
Kehagias-Sfetsos space-time are always smaller than their Schwarzschild value.
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FIG. 2: The radius of the Einstein ring as function of the mass parameter ε̄ and Hořava-Lifshitz parameter λ̄ for the Kehagias-
Sfetsos space-time, assuming DLS/DL = 2. For λ̄ → 0 we reobtain the Schwarzschild result. With increasing λ̄, as the metric
approaches flatness, the radius of the Einstein ring shrinks, and tends to zero for large values of λ̄.

FIG. 3: The position of the images as function of the mass parameter ε̄ and Hořava-Lifshitz parameter log λ̄ for the Kehagias-
Sfetsos space-time (with DLS/DL = 2 and β = 10−3 rad) is represented on panel a). The three surfaces on the figure refer
to: (1) the focused positive image is represented by the upper (red) surface; (2) the focused negative image is seen underneath
(blue); (3) the scattered images (with 0 < θ < β) are found in the junction of the two surfaces mentioned generated by a
negative mass (green). For λ̄ → 0 we reobtain the Schwarzschild result, the parabola shown on panel b). With increasing λ̄
only the positive focused image is left. For very large λ̄, the metric approaches flatness.

2. Images

For generic positions β > 0, the numerical solving code for Eqs. (6), (10) and (11) calculates (θ/β, rmin/d, δ) as a
function of the parameters λ̄ and ε̄. The image positions (in units β, thus represented as θ/β) for a range of masses
(represented as ε̄/β2) are plotted on Fig. 3 (color online). The three surfaces on the figure refer to the following
situations: (1) the focused positive image is represented by the upper surface (red in color version); (2) the focused
negative image is seen underneath (blue); (3) the scattered images (with 0 < θ < β) are found in the junction of
the two surfaces mentioned generated by a negative mass (green). There is a parameter region encompassing only
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FIG. 4: The logarithm of the deflection angle δ as function of the distance of minimal appoach (represented in units m, on
logarithmic scale) and Hořava-Lifshitz parameter ω. The represented range of ω corresponds to the range of λ̄ of Fig 3, when
the lens mass is m = 4.284 · 1014 meter, DS = 4.190 · 1025 meter and DLS/DL = 2. For every ω there is a maximal deflection
angle δmax , corresponding to certain rcrit. The critical rcrit distance decreases with increasing ω. (Near the Schwarzschild
limit rcrit shelters below the horizon and tends to 0 when ω → ∞, resulting the well known decreasing δ(rmin) function out of
the horizon.) Rays passing both above and below rcrit will experience less deflection than δmax.

FIG. 5: The lensing geometry and rays labeled (a) and (b) for a large ω, reproducing image formation in Schwarzschild
space-time, with two images Ia and Ib of the source S. The deflection angles obey δ(b) > δ(a).

negative masses, where no image is formed at all (see (15)).
The parabolic edge of the represented surface (the parabola with the largest opening given by the λ̄ = 0 section)

corresponds to image formation by weak lensing in the Schwarzschild limit of the Kehagias-Sfetsos space-time. As we
increase λ̄, a similar evolution of the loci of the positive focused images occurs, as for the radius of the Einstein ring:
the images come closer to the optical axis. Increasing λ̄ even more leads to a surprising situation: the negative image
suddenly disappears (the lower surface has a sharp edge, when λ̄ → O

(
10−3

)
). We will explain this phenomenon

below. Finally, for sufficiently large λ̄ the space-time flattens and θ/β → 1, corresponding to no deflection at all.
In order to explain what happens in Fig 3 at intermediate values of λ̄ first we have to study the behavior of the

deflection angle δ as function of the distance of closest approach rmin. This is depicted in Fig 4 for various parameter
values ω corresponding to the intermediate λ̄ range. We find that (a) at a certain rmin the deflection angle decreases
with ω, and (b) there is a maximal deflection angle δmax, corresponding to certain rcrit. Rays passing both above and
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FIG. 6: The lensing geometry and rays for an ω producing a small enough value of δmax, such as the upper image (c) is formed,
however no lower image appears, as the ray (e) passsing through rcrit will intersect the optical axis farther then the observer.
All rays passing below the lens, irrespectively whether their rmin is smaller (d) or larger (f) then rcrit will intersect the optical
axis at even larger distance.

below rcrit will experience less deflection, than the one passing through rcrit.
Rays captured by the observer which pass below the lens should exhibit a larger deflection angle, than the ones

passing above the lens, see Fig 5. However for each source-lens-observer geometry there will be a value of ω for which
the corresponding δmax will not be sufficient to deflect any of the rays passing below the lens to the observer. Hence
the lower image disappears. This feature is illustrated in Fig 6. Similar considerations hold for the negative mass
region.
We conclude that light deflection by weak gravitational lensing typically produces two images, as in Schwarzschild

lensing, if ω is very large. For any fixed source-lens-observer geometry there is an intermediate value range of ω-s
for which only the upper image exists. Finally, as we have already emphasized, a sufficiently large λ̄ renders the
space-time close to flat.

III. EINSTEIN ANGLES AND THE KEHAGIAS-SFETSOS PARAMETER

The Large Synoptic Survey Telescope (LSST) is expected to discover a high number of gravitational lenses, allowing
statistical studies [17]. An advantage of LSST will be its excellent image quality [17]. The high resolution is crucial for
lens searches, as the typical angular scales of lensing are comparable to the seeing sizes of ground-based observations
(Fig 12.3 in [17]). The lens galaxy population is expected [17] to be dominated by massive elliptical galaxies at redshift
0.5-1, whose background light sources are the faint blue galaxies. Therefore the detection of such systems depends on
the ability to distinguish lens light from the source light [17]. Fig 12.6 in [17] shows how the detection rate of galaxy
lenses depends on image quality. The best predicted seeing presented in the figure is 0.3 arcsec. According to Fig
12.5 in [17] the median seeing is about half of that of the SDSS (Sloan Digital Sky Survey), which is 1.4 arcsec.
The Sloan Lens Advanced Camera and Spectrograph Survey (SLACS) has provided the largest sample of galaxy-

scale lenses to date, with almost 100 lenses detected and measured [18]. The sources are faint blue galaxies, selected
by their emission lines appearing in the lower redshift SDSS luminous red galaxy spectra. The largest collection of
gravitational lens systems of SLACS was analyzed in [19]. SLACS is a project that combines the massive data volume
of the SDSS with the high-resolution imaging capability of the Hubble Space Telescope (HST) to identify and study a
large and uniform sample of gravitational lens galaxies. The lens galaxies are selected from the spectroscopic database
of the SDSS for the presence of two galaxies along the same line of sight in the sky, one much more distant than the
other.
The HST images allow us to measure the angular size of the Einstein rings. The observed Einstein angles are given

in Table 1 in [19], they range from 0.69 arcsec to 1.78 arcsec. These angles combining with the distances measured
from the SDSS spectra give us direct measurements of the enclosed masses of the nearer galaxies (the lens galaxies).
The ACS-WFC (Advanced Camera for Surveys, Wide Field Channel) instrument was used for measurement of the
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galaxy θE [arcsec] M [1010 M⊙] DL [Mpc] DS [Mpc] rmin [Kpc] ωmin

[

10−48 cm−2
]

ω0,min [10−16]

J0008-0004 1.16 35 1172.743 1708.956 6.595 0.18942 5.0657

J0029-0055 0.96 12 750.391 1622.253 3.492 0.27033 0.84982

J0037-0942 1.53 29 669.889 1411.834 4.969 0.34628 6.3576

J0044+0113 0.79 9 446.200 672.576 1.709 1.2219 2.1606

J0109+1500 0.69 13 905.964 1291.699 3.031 0.33425 1.2332

J0157-0056 0.79 26 1276.277 1618.923 4.888 0.23749 3.5047

J0216-0813 1.16 49 984.161 1289.158 5.535 0.35670 18.697

J0252+0039 1.04 18 875.400 1644.710 4.414 0.22816 1.6138

J0330-0020 1.10 25 1020.790 1676.984 5.444 0.20053 2.7361

J0405-0455 0.80 3 293.680 1555.222 1.139 1.1703 0.22993

J0728+3835 1.25 20 696.489 1463.700 4.221 0.32141 2.8066

J0737+3216 1.00 29 964.236 1358.283 4.675 0.30324 5.5673

J0822+2652 1.17 24 784.904 1372.544 4.452 0.30991 3.8969

J0903+4116 1.29 45 1157.167 1675.061 7.237 0.19736 8.7248

J0912+0029 1.63 40 580.506 968.258 4.587 0.60497 21.131

J0935-0003 0.87 41 1013.21 1213.066 4.274 0.48386 17.756

J0936+0913 1.09 15 653.631 1366.016 3.454 0.36699 1.8026

J0946+1006 1.38 29 737.793 1388.471 4.936 0.32025 5.87966

J0956+5100 1.33 37 782.476 1217.394 5.045 0.37351 11.163

J0959+4416 0.96 17 775.156 1299.251 3.608 0.33752 2.1294

J0959+0410 0.99 8 465.339 1304.229 2.233 0.58732 0.82058

J1016+3859 1.09 15 592.045 1171.202 3.129 0.47174 2.3171

J1020+1122 1.20 34 879.827 1326.068 5.119 0.31376 7.9181

J1023+4230 1.41 23 656.356 1470.562 4.487 0.34248 3.9551

J1029+0420 1.01 6 393.820 1394.687 1.928 0.73490 0.57756

J1100+5329 1.52 47 954.102 1584.325 7.031 0.22552 10.875

J1106+5228 1.23 9 366.879 1119.963 2.188 0.90303 1.5968

J1112+0826 1.49 45 859.747 1408.858 6.211 0.28347 12.531

J1134+6027 1.10 13 548.213 1223.120 2.924 0.49304 1.8190

J1142+1001 0.98 17 737.793 1264.429 3.505 0.36081 2.2764

J1143-0144 1.68 19 400.476 1111.614 3.262 0.79571 6.2708

J1153+4612 1.05 11 626.027 1593.810 3.187 0.34366 0.90778

J1204+0358 1.31 17 580.506 1410.844 3.687 0.41199 2.5993

J1205+4910 1.22 25 719.910 1233.014 4.258 0.37895 5.1705

J1213+6708 1.42 14 455.803 1419.669 3.138 0.7912 2.4779

J1218+0830 1.45 16 493.548 1487.965 3.470 0.5017 2.8041

J1250+0523 1.13 18 762.845 1545.386 4.179 0.27744 1.9624

J1402+6321 1.35 29 693.857 1233.014 4.541 0.38808 7.1250

TABLE I: Column 1: the lens galaxies. Column 2-5: the Einstein angle θE, total lens mass inside the Einstein radius RE , the
distances DL and DLS . The quantities calculated from the model are rmin (column 6), ωmin and ω0,min := G2M2

lum+darkωmin/c
4

(columns 7 and 8).

Einstein angles [18]. This channel will be optimized for surveys in the near-infrared to search for galaxies and clusters
in the early universe, and possesses 0.049 arcsec pixel size [20]. The SLACS sample is currently the largest collection
of gravitational lens systems with known distances (redshifts) to both components.
The photometric and spectroscopic measurements for the 57 massive early-type lens galaxies discussed in [19] are

available from SDSS. By using multicolor photometry and lens models, [19] studied stellar-mass properties and the
luminous and dark matter composition of the early-type lens galaxies. The fraction of mass in the form of stars of
the selected early-type grade-A lens galaxies in the sample was also presented.
Astronomical angle measurements come with certain uncertainty ∆θ, which allow for a range ω ∈ (ωmin,∞) of the

Hořava-Lifshitz parameter, where ωmin obeys θE(ωmin) = θE,Sch −∆θ. For any such ω the Einstein angle would be
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galaxy θE [arcsec] M [1010 M⊙] DL [Mpc] DS [Mpc] rmin [Kpc] ωmin

[

10−48 cm−2
]

ω0,min [10−16]

J1403+0006 0.83 10 650.899 1221.693 2.619 0.41355 0.90280

J1416+5136 1.37 37 916.645 1555.865 6.088 0.23665 7.0726

J1420+6019 1.04 4 250.179 1304.222 1.261 1.6168 0.56474

J1430+4105 1.52 54 886.429 1351.555 6.532 0.30198 19.224

J1436-0000 1.12 23 886.429 1551.984 4.813 0.24263 2.8020

J1443+0304 0.81 6 490.443 1139.617 1.926 0.59752 0.46959

J1451-0239 1.04 8 462.168 1285.325 2.330 0.59786 0.83530

J1525+3327 1.31 48 1033.889 1487.965 6.566 0.25047 12.598

J1531-0105 1.71 27 568.859 1509.087 4.716 0.40490 6.4438

J1538+5817 1.00 9 518.128 1299.251 2.512 0.50680 0.89616

J1621+3931 1.29 29 794.563 1381.108 4.969 0.30476 5.5953

J1627-0053 1.23 23 701.736 1290.430 4.185 0.36381 4.2014

J1630+4520 1.78 49 801.749 1544.046 6.919 0.26412 13.844

J1636+4707 1.09 18 752.893 1451.370 3.979 0.29974 2.1201

J2238-0754 1.27 13 499.736 1484.718 3.077 0.49325 1.8198

J2300+0022 1.24 30 755.390 1208.707 4.541 0.38187 7.5028

J2303+1422 1.62 27 554.146 1281.465 4.352 0.46848 7.4556

J2321-0939 1.60 12 318.486 1300.500 2.470 1.0661 3.3514

J2341+0000 1.44 22 642.666 1553.284 4.487 0.33734 3.5644

TABLE II: Table I continued.

TABLE III: Radii of the first and second relativistic Einstein rings, with corresponding ωmin and ω0,min for ∆θE = 10−5 arcsec.

Einstein ring θE,Sch [10−5 arcsec] ωmin [cm−2] ω0,min

1st relativistic 2.557 8.1315 · 10−25 0.3282

2nd relativistic 2.554 8.1315 · 10−25 0.3282

observationally indistinguishable from the Schwarzschild value θE,Sch. By contrast, every ω < ωmin correspond to
Einstein rings outside the measurement accuracy. In the following we take the accuracy of SDSS, ∆θ = 0.049 arcsec.
In Tables I and II column 2 gives the Einstein angles of the lens galaxies enlisted in column 1, with the total (dark

+ luminous) masses falling inside the effective Einstein radius RE = DLθE given in column 3 [19]. We have converted
the redshifts zL, zS of the lens and the source galaxies given in Table 1 in [19] to the angular diameter distances DL,
DLS (columns 4, 5) using the value H0 = 70 km/s/Mpc for the Hubble parameter and ΩΛ = 0.7, ΩM = 0.3 for the
cosmological parameters.
We confronted all these data with the weak lensing equations in the Kehagias-Sfetsos space-time, obtaining numer-

ically the values of rmin, ωmin and ω0,min :=
(
GMlum+dark/c

2
)2

ωmin, given in columns 6, 7, 8. We will compare these
values with other constraints existing in the literature in the Conclusion Section, basically finding agreement with
other type of constraints.

IV. STRONG LENSING IN THE KEHAGIAS-SFETSOS SPACE-TIME

Relativistic images are not observed yet, however the Multi-AO Imaging Camera for Deep Observations (MICADO)
- to function from 2018, using adaptive optics, on the 42 m European Extremely Large Telescope - is designed to
have a resolution in the astrometric mode of about 10−5 arcsec [21, 22]. This resolution is close to the scale of the
relativistic images.
This will allow to constrain the quantities ω and ω0 in the strong lensing configuration, suggested for testing the

Schwarzschild space-time in Ref. [23]. In this configuration the lens is the Supermassive Black Hole in the center of
our galaxy, Sagittarius A*, with mass 4.3× 106 M⊙, and the light is coming from a stellar source on the opposite side
of the galaxy, such that the distances of the lens and the source are DL = 8.3 kpc and DS = 2DL. Next we apply
the method of constraining ω0 developed in the previous section for this configuration and the expected resolution of
MICADO.
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The results are presented in Table III. The rows refer to the first and second relativistic Einstein rings, respectively,
as calculated in the Schwarzschild space-time (column 2). Columns 3 and 4 contain the lower limit of ω and ω0

arising from the envisaged resolution of ∆θ = 10−5 arcsec. Although several orders of magnitude larger than presently
available limits, this value of ω0,min would still allow for the galactic Supermassive Black Hole to be a naked singularity,
as the black hole conditions ω0 > 1/2 and (14) are disobeyed. A further slight decrease in ∆θ would be necessary in
order to disrule this possibility.

V. CONCLUSION

In this paper, we discussed the image formation in both weak and strong gravitational lensing by the Kehagias-
Sfetsos solution in the framework of Hořava-Lifshitz gravity. Such a gravitational lens is characterized by a mass-type
parameter ε̄ and an additional parameter λ̄. The overbar denotes certain scaling of these dimensionless parameters
with a characteristic length d characterizing the geometry. The Schwarzschild limit occurs when λ̄ → 0, while in
the limit λ̄ → ∞ the Kehagias-Sfetsos space-time becomes flat (the contribution of an increasing λ̄ cancels the
gravitational attraction of the positive ε̄). There is also an intermediate range, characterized by the existence of a
maximal deflection angle δmax, occurring at rcrit. This means that both the rays passing closer and farther to the lens
than rcrit will experience less deflection.
In the weak lensing approximation a closed system of equations for the variables θ (image position), rmin (distance

of minimal approach) and δ (deflection angle) is given by the lens equation relating θ and δ to each other, an
integral formula to produce δ as a function of rmin and a third equation which connects rmin to the impact parameter
b = DL sin(sθ). We have employed the Virbhadra-Ellis lens equation, presenting sufficient accuracy for our first
order approach. For the deflection angle we adopted the improper integral given in Ref. [11], then performed a
transformation which removes the singularity at r = rmin, allowing the numerical integration. Finally we employed
the algebraic relation (10) connecting θ and rmin given in Ref. [15].
The aligned case β = 0 leads to the formation of Einstein rings. These Einstein angles were plotted as functions of

the space-time parameters ε̄ and λ̄ in Fig 2. For λ̄ → 0 we recovered the half-parabola shaped section of the surface,
representing the Schwarzschild limit of weak lensing. As λ̄ increases, the opening of the half-parabola decreases,
indicating a weakening of gravity.
For source positions β > 0 the surface representing the image positions, shown in Fig 3a, is more complex.

We showed that in the weak gravitational lensing regime, the light deflection either produces two images, as in
Schwarzschild lensing, or only one image. In the latter case the existence of δmax is obstructing the creation of the
lower image. As λ̄ increases further, the space-time flattens and θ/β → 1, which causes that the θ > 0 (upper,
red) surface on Fig 3a flattens as well. When λ̄ → O

(
10−3

)
the θ < 0 (lower, blue) branch has a sharp edge and

disappears. As a further consequence the middle (green) surface representing the two scattered images occurring for
negative masses also disappear for λ̄ → ∞. As in the Schwarzschild case, there is a parameter region encompassing
only negative masses, where no image is formed at all.
We also analyzed the photometric and spectroscopic measurements for a sample of 57 lens galaxies available from

SDSS, given in Ref. [19]. These led to estimates of masses and lensing distances. From the observed locations
of the corresponding Einstein rings and the accuracy of measurements we derived the range of the Hořava-Lifshitz
parameter ω = λ̄−1d−2 characterizing the Kehagias-Sfetsos space-time compatible with the observations. The results

are presented in Tables I, II . The dimensionless quantity ω0,min :=
(
GMlum+dark/c

2
)2

ωmin for the sample of lens

galaxies is typically found to be of the order 10−16.
We compare these numbers with related results in the literature. In Ref. [5] the Solar System tests were analyzed,

imposing constraints on ω0 from the available observations. Perihelion precession of the planet Mercury, deflection

of light by the Sun and the radar echo delay gave, respectively the limits ω
(pp)
0,min = 6.9× 10−16 ,ω

(ld)
0,min = 1.1× 10−15,

and ω
(red)
0,min = 2 × 10−15, respectively. In Ref. [24] the weak-field and slow-motion approximation was employed to

compare with the orbital periods of the transiting extrasolar planet HD209458b (Osiris), obtaining a weaker bound

of ω
(Osiris)
0 = 1.4 × 10−18. In Ref. [25], constraints on Hořava-Lifshitz gravity from light deflection observations

including long-baseline radio interferometry, Jupiter measurement, Hipparcos satellite are found also in the range of

ω
(radio)
0 ∈ 10−15 ÷ 10−17. Our findings are therefore consistent with these results. Stronger bounds of ω

(residual)
o =

7.2 × 10−10 were presented from the accurate data of range-residuals of the planet Mercury ranged from the Earth,

and ω
(Sag)
0 = 8 × 10−10 for the system constituted by the S2 star orbiting the Supermassive Black Hole (Sagittarius

A*) in the center of the Galaxy [26]. We stress however, that the latter value of ω
(Sag)
0 would render our galactic

Supermassive Black Hole into a naked singularity, as the condition ω0 > 1/2 is disobeyed.
Finally, we discussed the first two relativistic Einstein rings in the strong lensing regime. Applying to the galactic
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center as a strong lens and a light source located on the opposite side, a configuration discussed in Ref. [23], we
determined the constraints on ω0, given in Table III (under the assumption of fixed lens mass) arising from the
expected accuracy of 10−5 arcsec of future instruments [22]. We found that such measurements would constrain quite
severely the parameter range, up to ω0,min of order 10−1, allowing to either falsify the Hořava-Lifshitz theory or to
render the parameter of the Kehagias-Sfetsos space-time into a regime where it practically becomes indistinguishable
from the Schwarzschild space-time. This would set the strongest observational constraint on the Hořava-Lifshitz
parameter up to date.
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[2] P. Hořava, Phys. Rev. D79, 084008 (2009).
[3] M. Visser, arXiv:1103.5587 [hep-th] (2011).
[4] R. A. Konoplya, Phys. Lett. B679, 499 (2009); S. Chen and J. Jing, Phys. Rev. D80, 024036 (2009); J. Chen, Y. Wang,

arXiv:0905.2786 [gr-qc]; T. Harko, Z. Kovacs, F. S. N. Lobo, Phys. Rev. D80, 044021 (2009).
[5] T. Harko, Z. Kovacs, F. S. N. Lobo, Proc. Roy. Soc. Lond. A Math. Phys. Eng. Sci. 467, 1390 (2011); F. S. N. Lobo,

T. Harko, Z. Kovacs, Class. Quant. Grav. 28, 165001 (2011).
[6] A. Kehagias, K. Sfetsos, Phys. Lett. B678, 123 (2009).
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