624 research outputs found
Precision isotope shift measurements in Ca using highly sensitive detection schemes
We demonstrate an efficient high-precision optical spectroscopy technique for
single trapped ions with non-closed transitions. In a double-shelving
technique, the absorption of a single photon is first amplified to several
phonons of a normal motional mode shared with a co-trapped cooling ion of a
different species, before being further amplified to thousands of fluorescence
photons emitted by the cooling ion using the standard electron shelving
technique. We employ this extension of the photon recoil spectroscopy technique
to perform the first high precision absolute frequency measurement of the
D P transition in Ca,
resulting in a transition frequency of kHz.
Furthermore, we determine the isotope shift of this transition and the
S P transition for Ca,
Ca and Ca ions relative to Ca with an
accuracy below 100 kHz. Improved field and mass shift constants of these
transitions as well as changes in mean square nuclear charge radii are
extracted from this high resolution data
Damage-free single-mode transmission of deep-UV light in hollow-core PCF
Transmission of UV light with high beam quality and pointing stability is
desirable for many experiments in atomic, molecular and optical physics. In
particular, laser cooling and coherent manipulation of trapped ions with
transitions in the UV require stable, single-mode light delivery. Transmitting
even ~2 mW CW light at 280 nm through silica solid-core fibers has previously
been found to cause transmission degradation after just a few hours due to
optical damage. We show that photonic crystal fiber of the kagom\'e type can be
used for effectively single-mode transmission with acceptable loss and bending
sensitivity. No transmission degradation was observed even after >100 hours of
operation with 15 mW CW input power. In addition it is shown that
implementation of the fiber in a trapped ion experiment significantly increases
the coherence times of the internal state transfer due to an increase in beam
pointing stability
Top Management Team Diversity: A systematic Review
Empirical research investigating the impact of top management team (TMT)
diversity on executives’ decision making has produced inconclusive results.
To synthesize and aggregate the results on the diversity-performance
link, a meta-regression analysis (MRA) is conducted. It integrates more
than 200 estimates from 53 empirical studies investigating TMT diversity
and its impact on the quality of executives’ decision making as reflected
in corporate performance. The analysis contributes to the literature by
theoretically discussing and empirically examining the effects of TMT diversity
on corporate performance. Our results do not show a link between TMT
diversity and performance but provide evidence for publication bias. Thus,
the findings raise doubts on the impact of TMT diversity on performance
Small grid embeddings of 3-polytopes
We introduce an algorithm that embeds a given 3-connected planar graph as a
convex 3-polytope with integer coordinates. The size of the coordinates is
bounded by . If the graph contains a triangle we can
bound the integer coordinates by . If the graph contains a
quadrilateral we can bound the integer coordinates by . The
crucial part of the algorithm is to find a convex plane embedding whose edges
can be weighted such that the sum of the weighted edges, seen as vectors,
cancel at every point. It is well known that this can be guaranteed for the
interior vertices by applying a technique of Tutte. We show how to extend
Tutte's ideas to construct a plane embedding where the weighted vector sums
cancel also on the vertices of the boundary face
The Quest for Light Sea Quarks: Algorithms for the Future
As part of a systematic algorithm study, we present first results on a
performance comparison between a multibosonic algorithm and the hybrid Monte
Carlo algorithm as employed by the SESAM collaboration. The standard Wilson
fermion action is used on 32*16^3 lattices at beta=5.5.Comment: LaTeX, 3 pages, Lattice2001(algorithms
Intersecting Solitons, Amoeba and Tropical Geometry
We study generic intersection (or web) of vortices with instantons inside,
which is a 1/4 BPS state in the Higgs phase of five-dimensional N=1
supersymmetric U(Nc) gauge theory on R_t \times (C^\ast)^2 \simeq R^{2,1}
\times T^2 with Nf=Nc Higgs scalars in the fundamental representation. In the
case of the Abelian-Higgs model (Nf=Nc=1), the intersecting vortex sheets can
be beautifully understood in a mathematical framework of amoeba and tropical
geometry, and we propose a dictionary relating solitons and gauge theory to
amoeba and tropical geometry. A projective shape of vortex sheets is described
by the amoeba. Vortex charge density is uniformly distributed among vortex
sheets, and negative contribution to instanton charge density is understood as
the complex Monge-Ampere measure with respect to a plurisubharmonic function on
(C^\ast)^2. The Wilson loops in T^2 are related with derivatives of the Ronkin
function. The general form of the Kahler potential and the asymptotic metric of
the moduli space of a vortex loop are obtained as a by-product. Our discussion
works generally in non-Abelian gauge theories, which suggests a non-Abelian
generalization of the amoeba and tropical geometry.Comment: 39 pages, 11 figure
Six topics on inscribable polytopes
Inscribability of polytopes is a classic subject but also a lively research
area nowadays. We illustrate this with a selection of well-known results and
recent developments on six particular topics related to inscribable polytopes.
Along the way we collect a list of (new and old) open questions.Comment: 11 page
Integrating DGSs and GATPs in an Adaptative and Collaborative Blended-Learning Web-Environment
The area of geometry with its very strong and appealing visual contents and
its also strong and appealing connection between the visual content and its
formal specification, is an area where computational tools can enhance, in a
significant way, the learning environments.
The dynamic geometry software systems (DGSs) can be used to explore the
visual contents of geometry. This already mature tools allows an easy
construction of geometric figures build from free objects and elementary
constructions. The geometric automated theorem provers (GATPs) allows formal
deductive reasoning about geometric constructions, extending the reasoning via
concrete instances in a given model to formal deductive reasoning in a
geometric theory.
An adaptative and collaborative blended-learning environment where the DGS
and GATP features could be fully explored would be, in our opinion a very rich
and challenging learning environment for teachers and students.
In this text we will describe the Web Geometry Laboratory a Web environment
incorporating a DGS and a repository of geometric problems, that can be used in
a synchronous and asynchronous fashion and with some adaptative and
collaborative features.
As future work we want to enhance the adaptative and collaborative aspects of
the environment and also to incorporate a GATP, constructing a dynamic and
individualised learning environment for geometry.Comment: In Proceedings THedu'11, arXiv:1202.453
A Single Laser System for Ground-State Cooling of 25-Mg+
We present a single solid-state laser system to cool, coherently manipulate
and detect Mg ions. Coherent manipulation is accomplished by
coupling two hyperfine ground state levels using a pair of far-detuned Raman
laser beams. Resonant light for Doppler cooling and detection is derived from
the same laser source by means of an electro-optic modulator, generating a
sideband which is resonant with the atomic transition. We demonstrate
ground-state cooling of one of the vibrational modes of the ion in the trap
using resolved-sideband cooling. The cooling performance is studied and
discussed by observing the temporal evolution of Raman-stimulated sideband
transitions. The setup is a major simplification over existing state-of-the-art
systems, typically involving up to three separate laser sources
The functional maturation of M cells is dramatically reduced in the Peyer's patches of aged mice
The transcytosis of antigens across the follicle-associated epithelium (FAE) of Peyer's patches by microfold cells (M cells) is important for the induction of efficient immune responses to mucosal antigens. The mucosal immune response is compromised by ageing, but effects on M cells were unknown. We show that M-cell density in the FAE of aged mice was dramatically reduced. As a consequence, aged Peyer's patches were significantly deficient in their ability to transcytose particulate lumenal antigen across the FAE. Ageing specifically impaired the expression of Spi-B and the downstream functional maturation of M cells. Ageing also dramatically impaired C-C motif chemokine ligand 20 expression by the FAE. As a consequence, fewer B cells were attracted towards the FAE, potentially reducing their ability to promote M-cell maturation. Our study demonstrates that ageing dramatically impedes the functional maturation of M cells, revealing an important ageing-related defect in the mucosal immune system's ability to sample lumenal antigens
- …
