2,139 research outputs found
Determination of the charge carrier compensation mechanism in Te-doped GaAs by scanning tunneling microscopy.
We identified the charge carrier compensation mechanism in Te-doped GaAs with atomically resolved scanning tunneling microscopy. Three types of defects were found: tellurium donors (Te-As), Ga vacancies (V-Ga), and Ga vacancy-donor complexes (V-Ga-Te-As). We show quantitatively that the compensation in Te-doped bulk GaAs is exclusively caused by vacancy-donor complexes in contrast to Si-doped GaAs. This is explained with the Fermi-level effect as the universal mechanism leading to Ga vacancy formation in n-doped GaAs, and a Coulomb interaction leading to the formation of the complexes. The quantification of the carrier compensation yields a -3e charge state of V-Ga in bulk GaAs. (C) 2003 American Institute of Physics
Current in open quantum systems
We show that a dissipative current component is present in the dynamics
generated by a Liouville-master equation, in addition to the usual component
associated with Hamiltonian evolution. The dissipative component originates
from coarse graining in time, implicit in a master equation, and needs to be
included to preserve current continuity. We derive an explicit expression for
the dissipative current in the context of the Markov approximation. Finally, we
illustrate our approach with a simple numerical example, in which a quantum
particle is coupled to a harmonic phonon bath and dissipation is described by
the Pauli master equation.Comment: To appear in Phys. Rev. Let
Control over phase separation and nucleation using a laser-tweezing potential
Control over the nucleation of new phases is highly desirable but elusive. Even though there is a long history of crystallization engineering by varying physicochemical parameters, controlling which polymorph crystallizes or whether a molecule crystallizes or forms an amorphous precipitate is still a poorly understood practice. Although there are now numerous examples of control using laser-induced nucleation, the absence of physical understanding is preventing progress. Here we show that the proximity of a liquid–liquid critical point or the corresponding binodal line can be used by a laser-tweezing potential to induce concentration gradients. A simple theoretical model shows that the stored electromagnetic energy of the laser beam produces a free-energy potential that forces phase separation or triggers the nucleation of a new phase. Experiments in a liquid mixture using a low-power laser diode confirm the effect. Phase separation and nucleation using a laser-tweezing potential explains the physics behind non-photochemical laser-induced nucleation and suggests new ways of manipulating matter
Measuring Gravito-magnetic Effects by Multi Ring-Laser Gyroscope
We propose an under-ground experiment to detect the general relativistic
effects due to the curvature of space-time around the Earth (de Sitter effect)
and to rotation of the planet (dragging of the inertial frames or
Lense-Thirring effect). It is based on the comparison between the IERS value of
the Earth rotation vector and corresponding measurements obtained by a
tri-axial laser detector of rotation. The proposed detector consists of six
large ring-lasers arranged along three orthogonal axes.
In about two years of data taking, the 1% sensitivity required for the
measurement of the Lense-Thirring drag can be reached with square rings of 6
side, assuming a shot noise limited sensitivity ().
The multi-gyros system, composed of rings whose planes are perpendicular to one
or the other of three orthogonal axes, can be built in several ways. Here, we
consider cubic and octahedron structures. The symmetries of the proposed
configurations provide mathematical relations that can be used to study the
stability of the scale factors, the relative orientations or the ring-laser
planes, very important to get rid of systematics in long-term measurements,
which are required in order to determine the relativistic effects.Comment: 24 pages, 26 Postscript figure
Oxytocin improves synchronisation in leader-follower interaction
The neuropeptide oxytocin has been shown to affect social interaction. Meanwhile, the underlying mechanism remains highly debated. Using an interpersonal finger-tapping paradigm, we investigated whether oxytocin affects the ability to synchronise with and adapt to the behaviour of others. Dyads received either oxytocin or a non-active placebo, intranasally. We show that in conditions where one dyad-member was tapping to another unresponsive dyad-member – i.e. one was following another who was leading/self-pacing – dyads given oxytocin were more synchronised than dyads given placebo. However, there was no effect when following a regular metronome or when both tappers were mutually adapting to each other. Furthermore, relative to their self-paced tapping partners, oxytocin followers were less variable than placebo followers. Our data suggests that oxytocin improves synchronisation to an unresponsive partner’s behaviour through a reduction in tapping-variability. Hence, oxytocin may facilitate social interaction by enhancing sensorimotor predictions supporting interpersonal synchronisation. The study thus provides novel perspectives on how neurobiological processes relate to socio-psychological behaviour and contributes to the growing evidence that synchronisation and prediction are central to social cognition
Unsplittable coverings in the plane
A system of sets forms an {\em -fold covering} of a set if every point
of belongs to at least of its members. A -fold covering is called a
{\em covering}. The problem of splitting multiple coverings into several
coverings was motivated by classical density estimates for {\em sphere
packings} as well as by the {\em planar sensor cover problem}. It has been the
prevailing conjecture for 35 years (settled in many special cases) that for
every plane convex body , there exists a constant such that every
-fold covering of the plane with translates of splits into
coverings. In the present paper, it is proved that this conjecture is false for
the unit disk. The proof can be generalized to construct, for every , an
unsplittable -fold covering of the plane with translates of any open convex
body which has a smooth boundary with everywhere {\em positive curvature}.
Somewhat surprisingly, {\em unbounded} open convex sets do not misbehave,
they satisfy the conjecture: every -fold covering of any region of the plane
by translates of such a set splits into two coverings. To establish this
result, we prove a general coloring theorem for hypergraphs of a special type:
{\em shift-chains}. We also show that there is a constant such that, for
any positive integer , every -fold covering of a region with unit disks
splits into two coverings, provided that every point is covered by {\em at
most} sets
Magnons in real materials from density-functional theory
We present an implementation of the adiabatic spin-wave dynamics of Niu and
Kleinman. This technique allows to decouple the spin and charge excitations of
a many-electron system using a generalization of the adiabatic approximation.
The only input for the spin-wave equations of motion are the energies and Berry
curvatures of many-electron states describing frozen spin spirals. The latter
are computed using a newly developed technique based on constrained
density-functional theory, within the local spin density approximation and the
pseudo-potential plane-wave method. Calculations for iron show an excellent
agreement with experiments.Comment: 1 LaTeX file and 1 postscript figur
A laser gyroscope system to detect the Gravito-Magnetic effect on Earth
Large scale square ring laser gyros with a length of four meters on each side
are approaching a sensitivity of 1x10^-11 rad/s/sqrt(Hz). This is about the
regime required to measure the gravitomagnetic effect (Lense Thirring) of the
Earth. For an ensemble of linearly independent gyros each measurement signal
depends upon the orientation of each single axis gyro with respect to the
rotational axis of the Earth. Therefore at least 3 gyros are necessary to
reconstruct the complete angular orientation of the apparatus. In general, the
setup consists of several laser gyroscopes (we would prefer more than 3 for
sufficient redundancy), rigidly referenced to each other. Adding more gyros for
one plane of observation provides a cross-check against intra-system biases and
furthermore has the advantage of improving the signal to noise ratio by the
square root of the number of gyros. In this paper we analyze a system of two
pairs of identical gyros (twins) with a slightly different orientation with
respect to the Earth axis. The twin gyro configuration has several interesting
properties. The relative angle can be controlled and provides a useful null
measurement. A quadruple twin system could reach a 1% sensitivity after 3:2
years of data, provided each square ring has 6 m length on a side, the system
is shot noise limited and there is no source for 1/f- noise.Comment: 9 pages, 6 figures. 2010 Honourable mention of the Gravity Research
Foundation; to be published on J. Mod. Phys.
Reaction mechanisms in 24Mg+12C and 32S+24Mg
The occurence of "exotic" shapes in light N=Z alpha-like nuclei is
investigated for 24Mg+12C and 32S+24Mg. Various approaches of superdeformed and
hyperdeformed bands associated with quasimolecular resonant structures with low
spin are presented. For both reactions, exclusive data were collected with the
Binary Reaction Spectrometer in coincidence with EUROBALL IV installed at the
VIVITRON Tandem facility of Strasbourg. Specific structures with large
deformation were selectively populated in binary reactions and their associated
-decays studied. The analysis of the binary and ternary reaction
channels is discussed.Comment: 7 pages, 4 figures, Paper presented at the Fusion08 International
Conference on New Aspects of Heavy Ion Collisions Near the Coulomb Barrier,
Chicago. Proceedings to be published by AIP Conference Proceedings Illinois,
USA, September 22-26, 200
- …
