6,843 research outputs found
On the Symmetric Space Sigma-Model Kinematics
The solvable Lie algebra parametrization of the symmetric spaces is
discussed. Based on the solvable Lie algebra gauge two equivalent formulations
of the symmetric space sigma model are studied. Their correspondence is
established by inspecting the normalization conditions and deriving the field
transformation laws.Comment: 17 page
Exponential Metric Fields
The Laser Interferometer Space Antenna (LISA) mission will use advanced
technologies to achieve its science goals: the direct detection of
gravitational waves, the observation of signals from compact (small and dense)
stars as they spiral into black holes, the study of the role of massive black
holes in galaxy evolution, the search for gravitational wave emission from the
early Universe. The gravitational red-shift, the advance of the perihelion of
Mercury, deflection of light and the time delay of radar signals are the
classical tests in the first order of General Relativity (GR). However, LISA
can possibly test Einstein's theories in the second order and perhaps, it will
show some particular feature of non-linearity of gravitational interaction. In
the present work we are seeking a method to construct theoretical templates
that limit in the first order the tensorial structure of some metric fields,
thus the non-linear terms are given by exponential functions of gravitational
strength. The Newtonian limit obtained here, in the first order, is equivalent
to GR.Comment: Accepted for publication in Astrophysics and Space Science, 17 page
unreinforced masonry buildings
A recent earthquake of M=4.9 occurred on 29 October 2007 in C, ameli, Denizli, which is located in a seismically active region at southwest Anatolia, Turkey. It has caused extensive damages at unreinforced masonry buildings like many other cases observed in Turkey during other previous earthquakes. Most of the damaged structures were non-engineered, seismically deficient, unreinforced masonry buildings. This paper presents a site survey of these damaged buildings. In addition to typical masonry damages, some infrequent, event-specific damages were also observed. Reasons for the relatively wide spread damages considering the magnitude of the event are discussed in the paper
Periodontal mechanoreceptors and bruxism at low bite forces
Objective: In this study, we examined if 6–9 Hz jaw tremor, an indirect indicator of Periodontal Mechanoreceptor (PMR) activity, is different in bruxists compared to healthy participants during production of a low-level constant bite force. /
Methods: Bite force and surface EMG from the masseter muscle were recorded simultaneously as participants (13 patients, 15 controls) held a force transducer between the upper and lower incisors very gently. /
Results: Tremor in 6–9 Hz band for bruxists was greater on average compared to controls, but the difference was not significant, both for force recordings and EMG activity. /
Conclusions: The low effect sizes measured with the current protocol contrast highly with those of our previous study, where larger, dynamic bite forces were used, and where jaw tremor was markedly different in bruxists compared with controls. /
Significance: We have now gained important insight into the conditions under which abnormal jaw tremor can be elicited in bruxism. From a scientific standpoint, this is critical for understanding the ‘abnormality’ of PMR feedback in bruxism. From a clinical perspective, our results represent progress towards the development of an optimal protocol in which jaw tremor can serve as a biological marker of bruxism
Recommended from our members
Using infrared based relative navigation for active debris removal
A debris-free space environment is becoming a necessity for current and future missions and activities planned in the coming years. The only means of sustaining the orbital environment at a safe level for strategic orbits (in particular Sun Synchronous Orbits, SSO) in the long term is by carrying out Active Debris Removal (ADR) at the rate of a few removals per year. Infrared (IR) technology has been used for a long time in Earth Observations but its use for navigation and guidance has not been subject of research and technology development so far in Europe. The ATV-5 LIRIS experiment in 2014 carrying a Commercial-of-The-Shelf (COTS) infrared sensor was a first step in de-risking the use of IR technology for objects detection in space. In this context, Cranfield University, SODERN and ESA are collaborating on a research to investigate the potential of IR-based relative navigation for debris removal systems. This paper reports the findings and developments in this field till date and the contributions from the three partners in this research
Laplace Invariants for General Hyperbolic Systems
We consider the generalization of Laplace invariants to linear differential
systems of arbitrary rank and dimension. We discuss completeness of certain
subsets of invariants
Double-lumen balloon microcatheter-assisted occlusion of cerebral vessels with coils: a technical note
The purpose of this study was to describe a balloon-assisted double-lumen microcatheter technique to perform a controlled and tight coil packing of a vascular segment for vessel occlusion. This technique can be performed immediately after a test occlusion with the balloon kept in place and was, as illustrated in six cases, in our experience safe, straight forward to use and fas
Assessment of surface roughness and blood rheology on local coronary hemodynamics: a multi-scale computational fluid dynamics study
The surface roughness of the coronary artery is associated with the onset of atherosclerosis. The study applies, for the first time, the micro-scale variation of the artery surface to a 3D coronary model, investigating the impact on haemodynamic parameters which are indicators for atherosclerosis. The surface roughness of porcine coronary arteries have been detailed based on optical microscopy and implemented into a cylindrical section of coronary artery. Several approaches to rheology are compared to determine the benefits/limitations of both single and multiphase models for multi-scale geometry. Haemodynamic parameters averaged over the rough/smooth sections are similar; however, the rough surface experiences a much wider range, with maximum wall shear stress greater than 6 Pa compared to the approximately 3 Pa on the smooth segment. This suggests the smooth-walled assumption may neglect important near-wall haemodynamics. While rheological models lack sufficient definition to truly encompass the micro-scale effects occurring over the rough surface, single-phase models (Newtonian and non-Newtonian) provide numerically stable and comparable results to other coronary simulations. Multiphase models allow for phase interactions between plasma and red blood cells which is more suited to such multi-scale models. These models require additional physical laws to govern advection/aggregation of particulates in the near-wall region
BLUES from Music: BLind Underdetermined Extraction of Sources from Music
In this paper we propose to use an instantaneous ICA method (BLUES) to separate the instruments in a real music stereo recording. We combine two strong separation techniques to segregate instruments from a mixture: ICA and binary time-frequency masking. By combining the methods, we are able to make use of the fact that the sources are differently distributed in both space, time and frequency. Our method is able to segregate an arbitrary number of instruments and the segregated sources are maintained as stereo signals. We have evaluated our method on real stereo recordings, and we can segregate instruments which are spatially different from other instruments
- …