34 research outputs found

    Scaling of the distribution of price fluctuations of individual companies

    Full text link
    We present a phenomenological study of stock price fluctuations of individual companies. We systematically analyze two different databases covering securities from the three major US stock markets: (a) the New York Stock Exchange, (b) the American Stock Exchange, and (c) the National Association of Securities Dealers Automated Quotation stock market. Specifically, we consider (i) the trades and quotes database, for which we analyze 40 million records for 1000 US companies for the 2-year period 1994--95, and (ii) the Center for Research and Security Prices database, for which we analyze 35 million daily records for approximately 16,000 companies in the 35-year period 1962--96. We study the probability distribution of returns over varying time scales Δt\Delta t, where Δt\Delta t varies by a factor of 105\approx 10^5---from 5 min up to \approx 4 years. For time scales from 5~min up to approximately 16~days, we find that the tails of the distributions can be well described by a power-law decay, characterized by an exponent α3\alpha \approx 3 ---well outside the stable L\'evy regime 0<α<20 < \alpha < 2. For time scales Δt(Δt)×16\Delta t \gg (\Delta t)_{\times} \approx 16 days, we observe results consistent with a slow convergence to Gaussian behavior. We also analyze the role of cross correlations between the returns of different companies and relate these correlations to the distribution of returns for market indices.Comment: 10pages 2 column format with 11 eps figures. LaTeX file requiring epsf, multicol,revtex. Submitted to PR

    Volatility clustering and scaling for financial time series due to attractor bubbling

    Full text link
    A microscopic model of financial markets is considered, consisting of many interacting agents (spins) with global coupling and discrete-time thermal bath dynamics, similar to random Ising systems. The interactions between agents change randomly in time. In the thermodynamic limit the obtained time series of price returns show chaotic bursts resulting from the emergence of attractor bubbling or on-off intermittency, resembling the empirical financial time series with volatility clustering. For a proper choice of the model parameters the probability distributions of returns exhibit power-law tails with scaling exponents close to the empirical ones.Comment: For related publications see http://www.helbing.or

    Universal and non-universal properties of cross-correlations in financial time series

    Full text link
    We use methods of random matrix theory to analyze the cross-correlation matrix C of price changes of the largest 1000 US stocks for the 2-year period 1994-95. We find that the statistics of most of the eigenvalues in the spectrum of C agree with the predictions of random matrix theory, but there are deviations for a few of the largest eigenvalues. We find that C has the universal properties of the Gaussian orthogonal ensemble of random matrices. Furthermore, we analyze the eigenvectors of C through their inverse participation ratio and find eigenvectors with large inverse participation ratios at both edges of the eigenvalue spectrum--a situation reminiscent of results in localization theory.Comment: 14 pages, 3 figures, Revte

    Glacial history affected phenotypic differentiation in the Alpine plant Campanula thyrsoides

    Get PDF
    Numerous widespread Alpine plant species show molecular differentiation among populations from distinct regions. This has been explained as the result of genetic drift during glacial survival in isolated refugia along the border of the European Alps. Since genetic drift may affect molecular markers and phenotypic traits alike, we asked whether phenotypic differentiation mirrors molecular patterns among Alpine plant populations from different regions. Phenotypic traits can be under selection, so we additionally investigated whether part of the phenotypic differentiation can be explained by past selection and/or current adaptation. Using the monocarpic Campanula thyrsoides as our study species, a common garden experiment with plants from 21 populations from four phylogeographic groups located in regions across the Alps and the Jura Mountains was performed to test for differentiation in morphological and phenological traits. Past selection was investigated by comparing phenotypic differentiation among and within regions with molecular differentiation among and within regions. The common garden results indicated regional differentiation among populations for all investigated phenotypic traits, particularly in phenology. Delayed flowering in plants from the South-eastern Alps suggested adaptation to long sub-mediterranean summers and contrasted with earlier flowering of plants experiencing shorter growing seasons in regions with higher elevation to the West. Comparisons between molecular and phenotypic differentiation revealed diversifying selection among regions in height and biomass, which is consistent with adaptation to environmental conditions in glacial refugia. Within regions, past selection acted against strong diversification for most phenotypic traits, causing restricted postglacial adaptation. Evidence consistent with post-glacial adaptation was also given by negative correlation coefficients between several phenotypic traits and elevation of the population's origin. In conclusion, our study suggests that, irrespective of adaptation of plants to their current environment, glacial history can have a strong and long-lasting influence on the phenotypic evolution of Alpine plants

    Break zones in the distributions of alleles and species in alpine plants

    Full text link
    Aim  We test for the congruence between allele-based range boundaries (break zones) in silicicolous alpine plants and species-based break zones in the silicicolous flora of the European Alps. We also ask whether such break zones coincide with areas of large elevational variation. Location  The European Alps. Methods  On a regular grid laid across the entire Alps, we determined areas of allele- and species-based break zones using respective clustering algorithms, identifying discontinuities in cluster distributions (breaks), and quantifying integrated break densities (break zones). Discontinuities were identified based on the intra-specific genetic variation of 12 species and on the floristic distribution data from 239 species, respectively. Coincidence between the two types of break zones was tested using Spearman’s correlation. Break zone densities were also regressed on topographical complexity to test for the effect of elevational variation. Results  We found that two main break zones in the distribution of alleles and species were significantly correlated. Furthermore, we show that these break zones are in topographically complex regions, characterized by massive elevational ranges owing to high mountains and deep glacial valleys. We detected a third break zone in the distribution of species in the eastern Alps, which is not correlated with topographic complexity, and which is also not evident from allelic distribution patterns. Species with the potential for long-distance dispersal tended to show larger distribution ranges than short-distance dispersers. Main conclusions  We suggest that the history of Pleistocene glaciations is the main driver of the congruence between allele-based and species-based distribution patterns, because occurrences of both species and alleles were subject to the same processes (such as extinction, migration and drift) that shaped the distributions of species and genetic lineages. Large elevational ranges have had a profound effect as a dispersal barrier for alleles during post-glacial immigration. Because plant species, unlike alleles, cannot spread via pollen but only via seed, and thus disperse less effectively, we conclude that species break zones are maintained over longer time spans and reflect more ancient patterns than allele break zones

    Differentiation in morphology and flowering phenology between two Campanula thyrsoides L. subspecies

    Get PDF
    Subspecies are usually characterized by sets of morphological discontinuities. By means of common garden experiments, we investigated genetic differentiation in morphological and phenological traits in two geographically disjunct subspecies of Campanula thyrsoides L., i.e. subsp. thyrsoides (= C.* thyrsoides) occurring in the European Alps and Jura Mountains, and subsp. carniolica (= C.* carniolica) occurring in the Southeastern Alps and the Dinaric Arc. Nine out of 16 investigated traits were significantly different between C.* thyrsoides and C.* carniolica. For C.* carniolica inflorescence length was 1.4×, and above-ground biomass 2.7× higher, while flower density was significantly lower. Campanula* carniolica also showed delayed flowering and flower development from bottom to top compared to C.* thyrsoides which flowered from top to bottom. The inflorescence growth was indeterminate and flowering took several weeks in C.* carniolica, whereas C.* thyrsoides showed determinate flowering, rapidly opening all flowers within a few days. This differentiation in flowering phenology is likely to be adaptive. The submediterranean climate favours indeterminate flowering in C.* carniolica, allowing ongoing growth of the inflorescence throughout the long summer until environmental conditions worsen, whereas determinate and early flowering in C.* thyrsoides is favourable in the short growing season in the high Alps where seed production must be secured before temperature drops. Glacial survival in refugia with different climates (alpine vs. submediterranean) may have caused this regional differentiation
    corecore