617 research outputs found

    A geometrical analysis of the field equations in field theory

    Full text link
    In this review paper we give a geometrical formulation of the field equations in the Lagrangian and Hamiltonian formalisms of classical field theories (of first order) in terms of multivector fields. This formulation enables us to discuss the existence and non-uniqueness of solutions, as well as their integrability.Comment: 14 pages. LaTeX file. This is a review paper based on previous works by the same author

    On the Multimomentum Bundles and the Legendre Maps in Field Theories

    Full text link
    We study the geometrical background of the Hamiltonian formalism of first-order Classical Field Theories. In particular, different proposals of multimomentum bundles existing in the usual literature (including their canonical structures) are analyzed and compared. The corresponding Legendre maps are introduced. As a consequence, the definition of regular and almost-regular Lagrangian systems is reviewed and extended from different but equivalent ways.Comment: LaTeX file, 19 pages. Replaced with the published version. Minor mistakes are correcte

    Symplectic Cuts and Projection Quantization

    Get PDF
    The recently proposed projection quantization, which is a method to quantize particular subspaces of systems with known quantum theory, is shown to yield a genuine quantization in several cases. This may be inferred from exact results established within symplectic cutting.Comment: 12 pages, v2: additional examples and a new reference to related wor

    Multivector Field Formulation of Hamiltonian Field Theories: Equations and Symmetries

    Full text link
    We state the intrinsic form of the Hamiltonian equations of first-order Classical Field theories in three equivalent geometrical ways: using multivector fields, jet fields and connections. Thus, these equations are given in a form similar to that in which the Hamiltonian equations of mechanics are usually given. Then, using multivector fields, we study several aspects of these equations, such as the existence and non-uniqueness of solutions, and the integrability problem. In particular, these problems are analyzed for the case of Hamiltonian systems defined in a submanifold of the multimomentum bundle. Furthermore, the existence of first integrals of these Hamiltonian equations is considered, and the relation between {\sl Cartan-Noether symmetries} and {\sl general symmetries} of the system is discussed. Noether's theorem is also stated in this context, both the ``classical'' version and its generalization to include higher-order Cartan-Noether symmetries. Finally, the equivalence between the Lagrangian and Hamiltonian formalisms is also discussed.Comment: Some minor mistakes are corrected. Bibliography is updated. To be published in J. Phys. A: Mathematical and Genera

    Stabilizing s-hole dimethyl interactions

    Get PDF
    Methyl groups bound to electronegative atoms, such as N or O, are recognized to participate in tetrel bonding as Lewis acids. On the other hand, the capability of methyl groups bound to electropositive atoms, such as B or Al, to act as Lewis bases has been recently reported. Herein, we analyze the combination of these two behaviors to establish attractive methyl···methyl interactions. We have explored the Cambridge Structural Database to find experimental examples of these dimethyl-bound systems, finding a significant degree of directionality in the relative disposition of the two methyl groups. Moreover, we have carried out a comprehensive computational analysis at the DFT level of the dimethyl interactions, including the natural bond orbital, energy decomposition analysis, and topological analysis of the electron density (QTAIM and NCI). The dimethyl interaction is characterized as weak yet attractive and based on electrostatics, with a non-negligible contribution from orbital charge transfer and polarization

    On the k-Symplectic, k-Cosymplectic and Multisymplectic Formalisms of Classical Field Theories

    Get PDF
    The objective of this work is twofold: First, we analyze the relation between the k-cosymplectic and the k-symplectic Hamiltonian and Lagrangian formalisms in classical field theories. In particular, we prove the equivalence between k-symplectic field theories and the so-called autonomous k-cosymplectic field theories, extending in this way the description of the symplectic formalism of autonomous systems as a particular case of the cosymplectic formalism in non-autonomous mechanics. Furthermore, we clarify some aspects of the geometric character of the solutions to the Hamilton-de Donder-Weyl and the Euler-Lagrange equations in these formalisms. Second, we study the equivalence between k-cosymplectic and a particular kind of multisymplectic Hamiltonian and Lagrangian field theories (those where the configuration bundle of the theory is trivial).Comment: 25 page

    Geometric reduction in optimal control theory with symmetries

    Full text link
    A general study of symmetries in optimal control theory is given, starting from the presymplectic description of this kind of system. Then, Noether's theorem, as well as the corresponding reduction procedure (based on the application of the Marsden-Weinstein theorem adapted to the presymplectic case) are stated both in the regular and singular cases, which are previously described.Comment: 24 pages. LaTeX file. The paper has been reorganized. Additional comments have been included in Section 3. The example in Section 5.2 has been revisited. Some references have been adde

    Non-standard connections in classical mechanics

    Full text link
    In the jet-bundle description of first-order classical field theories there are some elements, such as the lagrangian energy and the construction of the hamiltonian formalism, which require the prior choice of a connection. Bearing these facts in mind, we analyze the situation in the jet-bundle description of time-dependent classical mechanics. So we prove that this connection-dependence also occurs in this case, although it is usually hidden by the use of the ``natural'' connection given by the trivial bundle structure of the phase spaces in consideration. However, we also prove that this dependence is dynamically irrelevant, except where the dynamical variation of the energy is concerned. In addition, the relationship between first integrals and connections is shown for a large enough class of lagrangians.Comment: 17 pages, Latex fil
    • …
    corecore