10,576 research outputs found

    Monopole Black Hole Skyrmions

    Get PDF
    Charged black hole solutions with pion hair are discussed. These can be used to study monopole black hole catalysis of proton decay. There also exist multi- black hole skyrmion solutions with BPS monopole behavior.Comment: 16 pages including 6 figure

    Numerical solution of the steady-state Navier-Stokes equations for hypersonic flow about blunt axisymmetric bodies

    Get PDF
    The steady-state Navier-Stokes equations are solved for hypersonic flow about blunt axisymmetric bodies. The equations of motion are solved by successive approximations using an implicit finite-difference scheme. The results are compared with viscous shock-layer theory, experimental data, and time-dependent solutions of the Navier-Stokes equations. It is demonstrated that viscous shock-layer theory is sufficiently accurate for the range of flight conditions normally encountered by entry vehicles

    Viscous shock layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    Get PDF
    The viscous shock layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially symmetric flow fields. Solutions are obtained using an implicit finite difference scheme and results are presented for hypersonic flow over spherically blunted cone configurations at free stream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis

    Numerical solution of the hypersonic viscous-shock-layer equations for laminar, transitional, and turbulent flows of a perfect gas over blunt axially symmetric bodies

    Get PDF
    The viscous shock layer equations applicable to hypersonic laminar, transitional, and turbulent flows of a perfect gas over two-dimensional plane or axially symmetric blunt bodies are presented. The equations are solved by means of an implicit finite difference scheme, and the results are compared with a turbulent boundary layer analysis. The agreement between the two solution procedures is satisfactory for the region of flow where streamline swallowing effects are negligible. For the downstream regions, where streamline swallowing effects are present, the expected differences in the two solution procedures are evident

    Phase-Insensitive Scattering of Terahertz Radiation

    Get PDF
    The nonlinear interaction between Near-Infrared (NIR) and Terahertz pulses is principally investigated as a means for the detection of radiation in the hardly accessible THz spectral region. Most studies have targeted second-order nonlinear processes, given their higher efficiencies, and only a limited number have addressed third-order nonlinear interactions, mainly investigating four-wave mixing in air for broadband THz detection. We have studied the nonlinear interaction between THz and NIR pulses in solid-state media (specifically diamond), and we show how the former can be frequency-shifted up to UV frequencies by the scattering from the nonlinear polarisation induced by the latter. Such UV emission differs from the well-known electric-field-induced second harmonic (EFISH) one, as it is generated via a phase-insensitive scattering, rather than a sum- or difference-frequency four-wave-mixing process

    Blunt Body Aerodynamics for Hypersonic Low Density Flows

    Get PDF
    Numerical simulations are performed for the Apollo capsule from the hypersonic rarefied to the continuum regimes. The focus is on flow conditions similar to those experienced by the Apollo 6 Command Module during the high altitude portion of its reentry. The present focus is to highlight some of the current activities that serve as a precursor for computational tool assessments that will be used to support the development of aerodynamic data bases for future capsule flight environments, particularly those for the Crew Exploration Vehicle (CEV). Results for aerodynamic forces and moments are presented that demonstrate their sensitivity to rarefaction; that is, free molecular to continuum conditions. Also, aerodynamic data are presented that shows their sensitivity to a range of reentry velocities, encompassing conditions that include reentry from low Earth orbit, lunar return, and Mars return velocities (7.7 to 15 km/s). The rarefied results obtained with direct simulation Monte Carlo (DSMC) codes are anchored in the continuum regime with data from Navier-Stokes simulations

    Testing models of inflation with CMB non-gaussianity

    Full text link
    Two different predictions for the primordial curvature fluctuation bispectrum are compared through their effects on the Cosmic Microwave Background temperature fluctuations. The first has a local form described by a single parameter f_{NL}. The second is based on a prediction from the warm inflationary scenario, with a different dependence on wavenumber and a parameter f_{WI}. New expressions are obtained for the angular bispectra of the temperature fluctuations and for the estimators used to determine fNLf_{NL} and f_{WI}. The standard deviation of the estimators in an ideal experiment is roughly 5 times larger for f_{WI} than for f_{NL}. Using 3 year WMAP data gives limits -375<f_{WI}<36.8, but there is a possibility of detecting a signal for f_{WI} from the Planck satellite.Comment: 13 pages, 5 figures in ReVTe

    Emotional Freedom Techniques (Tapping) to Improve Wellbeing and Reduce Anxiety in Primary School Classrooms

    Get PDF
    The use of Emotional Freedom Techniques (EFT) as a class exercise was investigated to ascertain its effectiveness for student wellbeing. Although EFT has been validated in clinical settings, studies have not yet established whether this approach could be applied in classrooms to curb anxiety and improve wellbeing. A pragmatic, mixed methods study was conducted with 138 students in northern Australian primary schools. Student anxiety dissipated over two stages of intervention. Aside from class tapping sessions, students sometimes tapped surreptitiously, and teachers applied tapping for themselves on occasions. Students generally preferred a quieter, individual approach during class tapping sessions. Broader themes derived from student and teacher data suggested that tapping is a mechanism for change, the skills are transferable, and unsurprisingly, tapping is not always effective. EFT supports social and emotional learning and aligns with the Australian school curriculum. Findings suggest EFT used in classrooms can benefit students and teacher

    Covering problems in edge- and node-weighted graphs

    Full text link
    This paper discusses the graph covering problem in which a set of edges in an edge- and node-weighted graph is chosen to satisfy some covering constraints while minimizing the sum of the weights. In this problem, because of the large integrality gap of a natural linear programming (LP) relaxation, LP rounding algorithms based on the relaxation yield poor performance. Here we propose a stronger LP relaxation for the graph covering problem. The proposed relaxation is applied to designing primal-dual algorithms for two fundamental graph covering problems: the prize-collecting edge dominating set problem and the multicut problem in trees. Our algorithms are an exact polynomial-time algorithm for the former problem, and a 2-approximation algorithm for the latter problem, respectively. These results match the currently known best results for purely edge-weighted graphs.Comment: To appear in SWAT 201
    corecore