894 research outputs found

    Passive and active seismic isolation for gravitational radiation detectors and other instruments

    Get PDF
    Some new passive and active methods for reducing the effects of seismic disturbances on suspended masses are described, with special reference to gravitational radiation detectors in which differential horizontal motions of two or more suspended test masses are monitored. In these methods it is important to be able to determine horizontal seismic accelerations independent of tilts of the ground. Measurement of changes in inclination of the suspension wire of a test mass, relative to a direction defined by a reference arm of long period of oscillation, makes it possible to carry this out over the frequency range of interest for earth-based gravitational radiation detectors. The signal obtained can then be used to compensate for the effects of seismic disturbances on the test mass if necessary. Alternatively the signal corresponding to horizontal acceleration can be used to move the point from which the test mass is suspended in such a way as to reduce the effect of the seismic disturbance and also damp pendulum motions of the suspended test mass. Experimental work with an active anti-seismic system of this type is described

    High-sensitivity optical measurement of mechanical Brownian motion

    Get PDF
    We describe an experiment in which a laser beam is sent into a high-finesse optical cavity with a mirror coated on a mechanical resonator. We show that the reflected light is very sensitive to small mirror displacements. We have observed the Brownian motion of the resonator with a very high sensitivity.Comment: 4 pages, 4 figures, RevTe

    Detection of Vacuum Birefringence with Intense Laser Pulses

    Full text link
    We propose a novel technique that promises hope of being the first to directly detect a polarization in the quantum electrodynamic (QED) vacuum. The technique is based upon the use of ultra-short pulses of light circulating in low dispersion optical resonators. We show that the technique circumvents the need for large scale liquid helium cooled magnets, and more importantly avoids the experimental pitfalls that plague existing experiments that make use of these magnets. Likely improvements in the performance of optics and lasers would result in the ability to observe vacuum polarization in an experiment of only a few hours duration.Comment: 4 pages, 1 figur

    Geophysical studies with laser-beam detectors of gravitational waves

    Full text link
    The existing high technology laser-beam detectors of gravitational waves may find very useful applications in an unexpected area - geophysics. To make possible the detection of weak gravitational waves in the region of high frequencies of astrophysical interest, ~ 30 - 10^3 Hz, control systems of laser interferometers must permanently monitor, record and compensate much larger external interventions that take place in the region of low frequencies of geophysical interest, ~ 10^{-5} - 3 X 10^{-3} Hz. Such phenomena as tidal perturbations of land and gravity, normal mode oscillations of Earth, oscillations of the inner core of Earth, etc. will inevitably affect the performance of the interferometers and, therefore, the information about them will be stored in the data of control systems. We specifically identify the low-frequency information contained in distances between the interferometer mirrors (deformation of Earth) and angles between the mirrors' suspensions (deviations of local gravity vectors and plumb lines). We show that the access to the angular information may require some modest amendments to the optical scheme of the interferometers, and we suggest the ways of doing that. The detailed evaluation of environmental and instrumental noises indicates that they will not prevent, even if only marginally, the detection of interesting geophysical phenomena. Gravitational-wave instruments seem to be capable of reaching, as a by-product of their continuous operation, very ambitious geophysical goals, such as observation of the Earth's inner core oscillations.Comment: 29 pages including 8 figures, modifications and clarifications in response to referees' comments, to be published in Class. Quant. Gra

    Generation of Squeezing in Higher Order Hermite-Gaussian Modes with an Optical Parametric Amplifier

    Get PDF
    We demonstrate quantum correlations in the transverse plane of continuous wave light beams by producing -4.0 dB, -2.6 dB and -1.5 dB of squeezing in the TEM00, TEM10 and TEM20 Hermite- Gauss modes with an optical parametric amplifier, respectively. This has potential applications in quantum information networking, enabling parallel quantum information processing. We describe the setup for the generation of squeezing and analyze the effects of various experimental issues such as mode overlap between pump and seed and nonlinear losses.Comment: 7 pages, 4 figure

    A Search for Isolated Radio Pulses from the Crab Nebula at 151.5 MHz

    Get PDF
    A search has been made for large bursts of radio emission at 151.5 MHz from the direction of the Crab Nebula. In 605 hr of observation, no events exceeding a flux of 1.4 × 10^(−22) W m^(−2) Hz^(−1) were detected. This therefore sets an upper limit for the energy in radio pulses from the direction of the Crab Nebula which might be associated with the events recorded in the gravitational wave experiments of Weber. Implications of the results with regard to ‘strong pulses’ and phase fluctuations in the periodic emissions from the pulsar NP 0532 are also examined

    Creation, doubling, and splitting, of vortices in intracavity second harmonic generation

    Full text link
    We demonstrate generation and frequency doubling of unit charge vortices in a linear astigmatic resonator. Topological instability of the double charge harmonic vortices leads to well separated vortex cores that are shown to rotate, and become anisotropic, as the resonator is tuned across resonance

    Optical fibers with interferometric path length stability by controlled heating for transmission of optical signals and as components in frequency standards

    Full text link
    We present a simple method to stabilize the optical path length of an optical fiber to an accuracy of about 1/100 of the laser wavelength. We study the dynamic response of the path length to modulation of an electrically conductive heater layer of the fiber. The path length is measured against the laser wavelength by use of the Pound-Drever-Hall method; negative feedback is applied via the heater. We apply the method in the context of a cryogenic resonator frequency standard.Comment: Expanded introduction and outlook. 9 pages, 5 figure

    A high stability semiconductor laser system for a 88^{88}Sr-based optical lattice clock

    Get PDF
    We describe a frequency stabilized diode laser at 698 nm used for high resolution spectroscopy of the 1S0-3P0 strontium clock transition. For the laser stabilization we use state-of-the-art symmetrically suspended optical cavities optimized for very low thermal noise at room temperature. Two-stage frequency stabilization to high finesse optical cavities results in measured laser frequency noise about a factor of three above the cavity thermal noise between 2 Hz and 11 Hz. With this system, we demonstrate high resolution remote spectroscopy on the 88Sr clock transition by transferring the laser output over a phase-noise-compensated 200 m-long fiber link between two separated laboratories. Our dedicated fiber link ensures a transfer of the optical carrier with frequency stability of 7 \cdot 10^{-18} after 100 s integration time, which could enable the observation of the strontium clock transition with an atomic Q of 10^{14}. Furthermore, with an eye towards the development of transportable optical clocks, we investigate how the complete laser system (laser+optics+cavity) can be influenced by environmental disturbances in terms of both short- and long-term frequency stability.Comment: 9 pages, 9 figures, submitted to Appl. Phys.
    • 

    corecore