514 research outputs found

    Near-threshold high-order harmonic spectroscopy with aligned molecules

    Full text link
    We study high-order harmonic generation in aligned molecules close to the ionization threshold. Two distinct contributions to the harmonic signal are observed, which show very different responses to molecular alignment and ellipticity of the driving field. We perform a classical electron trajectory analysis, taking into account the significant influence of the Coulomb potential on the strong-field-driven electron dynamics. The two contributions are related to primary ionization and excitation processes, offering a deeper understanding of the origin of high harmonics near the ionization threshold. This work shows that high harmonic spectroscopy can be extended to the near-threshold spectral range, which is in general spectroscopically rich.Comment: 4 pages, 4 figure

    Aerosol Data Sources and Their Roles within PARAGON

    Get PDF
    We briefly but systematically review major sources of aerosol data, emphasizing suites of measurements that seem most likely to contribute to assessments of global aerosol climate forcing. The strengths and limitations of existing satellite, surface, and aircraft remote sensing systems are described, along with those of direct sampling networks and ship-based stations. It is evident that an enormous number of aerosol-related observations have been made, on a wide range of spatial and temporal sampling scales, and that many of the key gaps in this collection of data could be filled by technologies that either exist or are expected to be available in the near future. Emphasis must be given to combining remote sensing and in situ active and passive observations and integrating them with aerosol chemical transport models, in order to create a more complete environmental picture, having sufficient detail to address current climate forcing questions. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) initiative would provide an organizational framework to meet this goal

    Transformation of Education Processes and Preparation of Competencies for the Digital Economy

    Get PDF
    In this article, the problem of training specialists with digital competencies for the agricultural sector, as the main industry, necessary for the food security of the state. The analysis of the views of researchers on the issues of teaching youth in the context of global digitalization is presented. The analysis and generalization of information about modern technologies in the system of training personnel for the agro-industrial complex, taking into account the experience of the Omsk State Agrarian University, with the support of modern information and communication technologies. The idea is substantiated that digitalization of production and management processes in the agro-industrial complex is impossible without hard and soft skills with new competencies. The article summarizes new material based on the results of a survey of rural youth in Russia and Kazakhstan on the problem of professional self-determination. The characteristic features of modern students and their self-positioning in the conditions of a changing professional environment are highlighted and described. Special attention in the work of the authors is focused on the need to form an educational trajectory, which is based on the symbiosis of classical agricultural education, practice-oriented learning, project activities, concepts - technologies, e-learning and other digital educational resources. The conclusion reveals the authors' opinion on the forecast trends on the issue under study. Keywords: Youth, Professional self-determination, Training, Omsk State Agrarian University, Survey, Digital competencies

    MISR Global Aerosol Product Assessment by Comparison with AERONET

    Get PDF
    A statistical approach is used to assess the quality of the MISR Version 22 (V22) aerosol products. Aerosol Optical Depth (AOD) retrieval results are improved relative to the early post- launch values reported by Kahn et al. [2005a], varying with particle type category. Overall, about 70% to 75% of MISR AOD retrievals fall within 0.05 or 20% AOD of the paired validation data, and about 50% to 55% are within 0.03 or 10% AOD, except at sites where dust, or mixed dust and smoke, are commonly found. Retrieved particle microphysical properties amount to categorical values, such as three groupings in size: "small," "medium," and "large." For particle size, ground-based AERONET sun photometer Angstrom Exponents are used to assess statistically the corresponding MISR values, which are interpreted in terms of retrieved size categories. Coincident Single-Scattering Albedo (SSA) and fraction AOD spherical data are too limited for statistical validation. V22 distinguishes two or three size bins, depending on aerosol type, and about two bins in SSA (absorbing vs. non-absorbing), as well as spherical vs. non-spherical particles, under good retrieval conditions. Particle type sensitivity varies considerably with conditions, and is diminished for mid-visible AOD below about 0.15 or 0.2. Based on these results, specific algorithm upgrades are proposed, and are being investigated by the MISR team for possible implementation in future versions of the product

    Genetic Analysis of a Disease Resistance Gene from Loblolly Pine

    Get PDF
    Rapid advances in molecular genetics provide great opportunities for studies of host defense mechanisms. Examination of plant responses to disease at the cellular and molecular level permits both discovery of changes in gene expression in the tissues attacked by pathogens, and identification of genetic components involved in the interaction between host and pathogens. Expression of specific proteins, which is one type of defense mechanism, may offer the host a weapon to protect it from invasion of pathogenic attack. Recently, we have isolated a novel antimicrobial protein gene (PtAMP) from loblolly pine during our gene screening effort. Studies of molecular characterization show that the PtAMP gene shares limited similarity with previously reported antimicrobial proteins in the amino acid sequences, but it contains some common features, e.g. DNA sequences and protein structure, with those antimicrobial proteins. The function of this novel antimicrobial gene has been analyzed at the in vitro and in vivo levels. Antimicrobial assay data showed that the purified PtAMP protein has strong inhibitory activities against a variety of pathogenic bacteria and fungi. Furthermore, the gene for the PtAMP was transferred into the tobacco genome via Agrobacterium-mediated transformation. Ectopic expression of the PtAMP protein in transgenic tobacco plants confers resistance to bacterial and fungal phytopathogens. Our data suggest that the PtAMP gene has the potential through genetic manipulation to protect plants from a wide range of plant pathogens. Analysis of its function provides further understanding of plant defense mechanisms in loblolly pine.Papers and abstracts from the 27th Southern Forest Tree Improvement Conference held at Oklahoma State University in Stillwater, Oklahoma on June 24-27, 2003

    An Integrated Approach for Characterizing Aerosol Climate Impacts and Environmental Interactions

    Get PDF
    Aerosols exert myriad influences on the earth's environment and climate, and on human health. The complexity of aerosol-related processes requires that information gathered to improve our understanding of climate change must originate from multiple sources, and that effective strategies for data integration need to be established. While a vast array of observed and modeled data are becoming available, the aerosol research community currently lacks the necessary tools and infrastructure to reap maximum scientific benefit from these data. Spatial and temporal sampling differences among a diverse set of sensors, nonuniform data qualities, aerosol mesoscale variabilities, and difficulties in separating cloud effects are some of the challenges that need to be addressed. Maximizing the long-term benefit from these data also requires maintaining consistently well-understood accuracies as measurement approaches evolve and improve. Achieving a comprehensive understanding of how aerosol physical, chemical, and radiative processes impact the earth system can be achieved only through a multidisciplinary, inter-agency, and international initiative capable of dealing with these issues. A systematic approach, capitalizing on modern measurement and modeling techniques, geospatial statistics methodologies, and high-performance information technologies, can provide the necessary machinery to support this objective. We outline a framework for integrating and interpreting observations and models, and establishing an accurate, consistent, and cohesive long-term record, following a strategy whereby information and tools of progressively greater sophistication are incorporated as problems of increasing complexity are tackled. This concept is named the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON). To encompass the breadth of the effort required, we present a set of recommendations dealing with data interoperability; measurement and model integration; multisensor synergy; data summarization and mining; model evaluation; calibration and validation; augmentation of surface and in situ measurements; advances in passive and active remote sensing; and design of satellite missions. Without an initiative of this nature, the scientific and policy communities will continue to struggle with understanding the quantitative impact of complex aerosol processes on regional and global climate change and air quality

    Sensitivity analysis of school parameters to compare schools from different surveys: a review of the standardisation task of the EC-FAIR programme CLUSTER

    Get PDF
    Echo traces seen on echo grams contain a lot of information about the aggregation of fish in schools. But the acosutic image obtained with a vertical biomass assessment echosounder contains distorsions mainly due to the beam angle, the equipment settings and the school depth. When the acoustic image of aggregation patterns changes over the years or varies between stocks, it is important to know up to what extent biological interpretation is meaningful!. The present paper reviews the work performed by a group of scientist within the EC FAIR programme CLUSTER. Simulations were performed to correct school parameters. Digital data were replayed to assess the importance of these corrections. Charts were derived to limit biological interpretation of changes on the school acoustic images

    Two different charge-separation pathways in photosystem II

    Get PDF
    Charge separation is an essential step in the conversion of solar energy into chemical energy in photosynthesis. To investigate this process, we performed transient absorption experiments at 77 K with various excitation conditions on the isolated Photosystem II reaction center preparations from spinach. The results have been analyzed by global and target analysis and demonstrate that at least two different excited states, (Ch

    Histone acetylation controls the inactive X chromosome replication dynamics

    Get PDF
    In mammals, dosage compensation between male and female cells is achieved by inactivating one female X chromosome (Xi). Late replication of Xi was proposed to be involved in the maintenance of its silenced state. Here, we show a highly synchronous replication of the Xi within 1 to 2 h during early-mid S-phase by following DNA replication in living mammalian cells with green fluorescent protein-tagged replication proteins. The Xi was replicated before or concomitant with perinuclear or perinucleolar facultative heterochromatin and before constitutive heterochromatin. Ectopic expression of the X-inactive-specific transcript (Xist) gene from an autosome imposed the same synchronous replication pattern. We used mutations and chemical inhibition affecting different epigenetic marks as well as inducible Xist expression and we demonstrate that histone hypoacetylation has a key role in controlling Xi replication. The epigenetically controlled, highly coordinated replication of the Xi is reminiscent of embryonic genome replication in flies and frogs before genome activation and might be a common feature of transcriptionally silent chromatin
    • …
    corecore