30 research outputs found

    Research priorities for improving infant and young child feeding in humanitarian emergencies

    Get PDF
    Background There are many challenges during emergencies to ensure that optimal infant and young child feeding is protected, promoted and supported, but there is a dearth of evidence on strategies and programmes to improve Infant and Young Child Feeding in Emergencies (IYCF-E) and a need to determine research priorities. Methods Based on interviews with key informants who are experts in the subject, we developed a list of 48 research questions on IYCF-E. A framework, following the Child Health and Nutrition Research Initiative method to set priorities in child health research, was developed to rank the research questions. Four criteria were applied to create a ranking based on answerability, operational relevance, disease burden reduction and prevention, and originality. Using an on-line survey, prioritisation of research questions was done by 27 people from 14 NGOs, universities and research institutions, and UN organisations. Results The top-ten research questions identified focused on the following: • Use of cash-transfer to buy breast-milk substitutes; • Effectiveness of complementary feeding strategies; • Long-term effect of IYCF-E interventions; • Design of IYCF-E programmes in a context where breastfeeding rates are low and breast milk substitutes use is high; • Design of effective re-lactation interventions; • Provision of psychological support to young children’s care-takers; • Determination of number of beneficiaries and coverage of IYCF-E programmes; • Pros and cons of distributing ready-to-use infant formula compared with distributing powdered infant formula plus kit for safer use of BMS, when use of infant formula is necessary; • Assessment of the impact of specific IYCF-E programmes on nutritional status, morbidity and mortality; • Linking and mainstreaming IYCF-E interventions with other sectors such as health, WASH, food security and child protection. Conclusion The questions found by this study could form the basis of future research on IYCF-E and could be integrated into the agenda of relevant stakeholders. Results of studies based on these questions will be fundamental to fill the evidence gap in IYCF-E, improve IYCF-E programming and ultimately contribute to the reduction in morbidity and mortality among infants and young children in humanitarian emergencies

    Production of a high-velocity water slug using an impacting technique

    No full text
    A pulsed water jet consists of a series of discrete water slugs travelling at high velocity. Immediately after striking a target, these slugs apply high-intensity, short-duration transient stress pulses reaching an amplitude known as the water hammer pressure, followed by low-intensity, long-duration stationary stress at a lower stagnation pressure. The magnitude and duration of the water hammer and stagnation pressures are controlled by the size and quality of the water slugs. The use of water jets for rock cutting in mining operations is a centuries-old technology; however, practical methods for producing high-energy water slugs repeatedly have proven difficult. This can be partly due to the fact that the geometrical properties of a jet and so its effectiveness in creating damage is controlled and influenced by the method that is employed to generate the water slugs. This paper investigates the quality of a single water slug produced using an impacting technique where a hammer strikes a piston, resting on top of a water-filled chamber. The coherence and integrity of the jet core was of concern in this study. The impact impulse of the formed water jet was measured in a Kel-F target material using an embedded PVDF (Polyvinylidene fluoride) shock gauge. The recorded stress waveform was then used to determine the unity and endurance of the water slug stream once travelled through air

    LED-Based Temperature Sensor

    No full text

    Nanophotonic Platforms for Enhanced Chiral Sensing

    No full text
    Chirality plays an essential role in life, providing unique functionalities to a wide range of biomolecules, chemicals, and drugs, which makes chiral sensing and analysis critically important. The wider application of chiral sensing continues to be constrained by the involved chiral signals being inherently weak. To remedy this, plasmonic and dielectric nanostructures have recently been shown to offer a viable route for enhancing weak circular dichroism (CD) effects, but most relevant studies have thus far been ad hoc, not guided by a rigorous analytical methodology. Here, we report the first analytical treatment of CD enhancement and extraction from a chiral biolayer placed on top of a nanostructured substrate. We derive closed-form expressions of the CD and its functional dependence on the background-chiroptical response, substrate thickness and chirality, as well as on the optical chirality and intensity enhancement provided by the structure. Our results provide key insights into the trade-offs that are to be accommodated in the design and conception of optimal nanophotonic structures for enhancing CD effects for chiral molecule detection. Based on our analysis, we also introduce a practical, dielectric platform for chiral sensing featuring large CD enhancements while exhibiting vanishing chiroptical background noise
    corecore