107 research outputs found

    A Novel System for the Efficient Generation of Antibodies Following Immunization of Unique Knockout Mouse Strains

    Get PDF
    International audienceBACKGROUND: We wished to develop alternate production strategies to generate antibodies against traditionally problematic antigens. As a model we chose butyrylcholinesterase (BChE), involved in termination of cholinergic signaling, and widely considered as a poor immunogen. METHODOLOGY/PRINCIPAL FINDINGS: Jettisoning traditional laborious in silico searching methods to define putative epitopes, we simply immunized available BChE knock-out mice with full-length recombinant BChE protein (having been produced for crystallographic analysis). Immunization with BChE, in practically any form (recombinant human or mouse BChE, BChE purified from human serum, native or denatured), resulted in strong immune responses. Native BChE produced antibodies that favored ELISA and immunostaining detection. Denatured and reduced BChE were more selective for antibodies specific in Western blots. Two especially sensitive monoclonal antibodies were found capable of detecting 0.25 ng of BChE within one min by ELISA. One is specific for human BChE; the other cross-reacts with mouse and rat BChE. Immunization of wild-type mice served as negative controls. CONCLUSIONS/SIGNIFICANCE: We examined a simple, fast, and highly efficient strategy to produce antibodies by mining two expanding databases: namely those of knock-out mice and 3D crystallographic protein-structure analysis. We conclude that the immunization of knock-out mice should be a strategy of choice for antibody production

    Global evidence of gender equity in academic health research: a scoping review

    Get PDF
    Objectives: To chart the global literature on gender equity in academic health research. Design: Scoping review. Participants: Quantitative studies were eligible if they examined gender equity within academic institutions including health researchers. Primary and secondary outcome measures: Outcomes related to equity across gender and other social identities in academia: (1) faculty workforce: representation of all genders in university/faculty departments, academic rank or position and salary; (2) service: teaching obligations and administrative/non-teaching activities; (3) recruitment and hiring data: number of applicants by gender, interviews and new hires for various rank; (4) promotion: opportunities for promotion and time to progress through academic ranks; (5) academic leadership: type of leadership positions, opportunities for leadership promotion or training, opportunities to supervise/mentor and support for leadership bids; (6) scholarly output or productivity: number/type of publications and presentations, position of authorship, number/value of grants or awards and intellectual property ownership; (7) contextual factors of universities; (8) infrastructure; (9) knowledge and technology translation activities; (10) availability of maternity/paternity/parental/family leave; (11) collaboration activities/opportunities for collaboration; (12) qualitative considerations: perceptions around promotion, finances and support. Results: Literature search yielded 94 798 citations; 4753 full-text articles were screened, and 562 studies were included. Most studies originated from North America (462/562, 82.2%). Few studies (27/562, 4.8%) reported race and fewer reported sex/gender (which were used interchangeably in most studies) other than male/female (11/562, 2.0%). Only one study provided data on religion. No other PROGRESS-PLUS variables were reported. A total of 2996 outcomes were reported, with most studies examining academic output (371/562, 66.0%). Conclusions: Reviewed literature suggest a lack in analytic approaches that consider genders beyond the binary categories of man and woman, additional social identities (race, religion, social capital and disability) and an intersectionality lens examining the interconnection of multiple social identities in understanding discrimination and disadvantage. All of these are necessary to tailor strategies that promote gender equity. Trial registration number: Open Science Framework: https://osf.io/8wk7e/

    Effects of 3,4-Methylenedioxymethamphetamine Administration on Retinal Physiology in the Rat

    Get PDF
    3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) is known to produce euphoric states, but may also cause adverse consequences in humans, such as hyperthermia and neurocognitive deficits. Although MDMA consumption has been associated with visual problems, the effects of this recreational drug in retinal physiology have not been addressed hitherto. In this work, we evaluated the effect of a single MDMA administration in the rat electroretinogram (ERG). Wistar rats were administered MDMA (15 mg/kg) or saline and ERGs were recorded before (Baseline ERG), and 3 h, 24 h, and 7 days after treatment. A high temperature (HT) saline-treated control group was also included. Overall, significantly augmented and shorter latency ERG responses were found in MDMA and HT groups 3 h after treatment when compared to Baseline. Twenty-four hours after treatment some of the alterations found at 3 h, mainly characterized by shorter latency, tended to return to Baseline values. However, MDMA-treated animals still presented increased scotopic a-wave and b-wave amplitudes compared to Baseline ERGs, which were independent of temperature elevation though the latter might underlie the acute ERG alterations observed 3 h after MDMA administration. Seven days after MDMA administration recovery from these effects had occurred. The effects seem to stem from specific changes observed at the a-wave level, which indicates that MDMA affects subacutely (at 24 h) retinal physiology at the outer retinal (photoreceptor/bipolar) layers. In conclusion, we have found direct evidence that MDMA causes subacute enhancement of the outer retinal responses (most prominent in the a-wave), though ERG alterations resume within one week. These changes in photoreceptor/bipolar cell physiology may have implications for the understanding of the subacute visual manifestations induced by MDMA in humans

    The epithelial cholinergic system of the airways

    Get PDF
    Acetylcholine (ACh), a classical transmitter of parasympathetic nerve fibres in the airways, is also synthesized by a large number of non-neuronal cells, including airway surface epithelial cells. Strongest expression of cholinergic traits is observed in neuroendocrine and brush cells but other epithelial cell types—ciliated, basal and secretory—are cholinergic as well. There is cell type-specific expression of the molecular pathways of ACh release, including both the vesicular storage and exocytotic release known from neurons, and transmembrane release from the cytosol via organic cation transporters. The subcellular distribution of the ACh release machineries suggests luminal release from ciliated and secretory cells, and basolateral release from neuroendocrine cells. The scenario as known so far strongly suggests a local auto-/paracrine role of epithelial ACh in regulating various aspects on the innate mucosal defence mechanisms, including mucociliary clearance, regulation of macrophage function and modulation of sensory nerve fibre activity. The proliferative effects of ACh gain importance in recently identified ACh receptor disorders conferring susceptibility to lung cancer. The cell type-specific molecular diversity of the epithelial ACh synthesis and release machinery implies that it is differently regulated than neuronal ACh release and can be specifically targeted by appropriate drugs

    Protective Effects of Walnut Extract Against Amyloid Beta Peptide-Induced Cell Death and Oxidative Stress in PC12 Cells

    Get PDF
    Amyloid beta-protein (Aβ) is the major component of senile plaques and cerebrovascular amyloid deposits in individuals with Alzheimer’s disease. Aβ is known to increase free radical production in neuronal cells, leading to oxidative stress and cell death. Recently, considerable attention has been focused on dietary antioxidants that are able to scavenge reactive oxygen species (ROS), thereby offering protection against oxidative stress. Walnuts are rich in components that have anti-oxidant and anti-inflammatory properties. The inhibition of in vitro fibrillization of synthetic Aβ, and solubilization of preformed fibrillar Aβ by walnut extract was previously reported. The present study was designed to investigate whether walnut extract can protect against Aβ-induced oxidative damage and cytotoxicity. The effect of walnut extract on Aβ-induced cellular damage, ROS generation and apoptosis in PC12 pheochromocytoma cells was studied. Walnut extract reduced Aβ-mediated cell death assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reduction, and release of lactate dehydrogenase (membrane damage), DNA damage (apoptosis) and generation of ROS in a concentration-dependent manner. These results suggest that walnut extract can counteract Aβ-induced oxidative stress and associated cell death

    CART Peptide Is a Potential Endogenous Antioxidant and Preferentially Localized in Mitochondria

    Get PDF
    The multifunctional neuropeptide Cocaine and Amphetamine Regulated Transcript (CART) is secreted from hypothalamus, pituitary, adrenal gland and pancreas. It also can be found in circulatory system. This feature suggests a general role for CART in different cells. In the present study, we demonstrate that CART protects mitochondrial DNA (mtDNA), cellular proteins and lipids against the oxidative action of hydrogen peroxide, a widely used oxidant. Using cis-parinaric acid as a sensitive reporting probe for peroxidation in membranes, and a lipid-soluble azo initiator of peroxyl radicals, 2,2′-Azobis(2,4-dimethylvaleronitrile) we found that CART is an antioxidant. Furthermore, we found that CART localized to mitochondria in cultured cells and mouse brain neuronal cells. More importantly, pretreatment with CART by systemic injection protects against a mouse oxidative stress model, which mimics the main features of Parkinson's disease. Given the unique molecular structure and biological features of CART, we conclude that CART is an antioxidant peptide (or antioxidant hormone). We further propose that it may have strong therapeutic properties for human diseases in which oxidative stress is strongly involved such as Parkinson's disease

    Cholinesterases: Structure, Role, and Inhibition

    Get PDF
    Acetilkolinesteraza (AChE; E.C. 3.1.1.7) i butirilkolinesteraza (BChE; E.C. 3.1.1.8) enzimi su koji se zbog svoje uloge u organizmu intenzivno istražuju unutar područja biomedicine i toksikologije. Iako strukturno homologni, ovi enzimi razlikuju se prema katalitičkoj aktivnosti, odnosno specifi čnosti prema supstratima koje mogu hidrolizirati te selektivnosti za vezanje mnogih liganada. U ovom radu dan je pregled dosadašnjih istraživanja kolinesteraza i njihovih interakcija s ligandima i inhibitorima te su izdvojene aminokiseline aktivnog mjesta koje sudjeluju u tim interakcijama.Enzymes acetylcholinesterase (AChE; E.C. 3.1.1.7) and butyrylcholinesterase (BChE; E.C. 3.1.1.8) have intensively been investigated in biomedicine and toxicology due to important role in organisms. Even if structurally homologous, they differ in catalytic activity, specificity, for substrates, and selectivity in binding to many ligands. This paper compiles the results of research on cholinesterases and their interactions with ligands and inhibitors, and identifies amino acids of active sites involved in these interactions

    An MRI brain atrophy and lesion index to assess the progression of structural changes in Alzheimer's disease, mild cognitive impairment, and normal aging: A follow-up study

    No full text
    Background: A brain atrophy and lesion index (BALI) based on high-field magnetic resonance imaging (MRI) has recently been validated to evaluate structural changes in the aging brain. The present study investigated the two-year progression of brain structural deficits in people with Alzheimer's disease (AD) and mild cognitive impairment (MCI), and in healthy control older adults (HC) using the BALI rating. Methods: T1-weighted high-resolution anatomical imaging data using 3 Tesla MRI at baseline (AD = 39, MCI = 82, HC = 58) and at 24-months were obtained from the Alzheimer's disease Neuroimaging Initiative database. Lesions in various brain structures, including the infratentorial and basal ganglia areas, and the periventricular and deep white matter and global atrophy, were evaluated and combined into the BALI scale. Results: Mean progression of brain deficits over two years was evident in all diagnostic groups (p < 0.001) and was statistically greater in MCI-AD converters than in the non-converters (p = 0.044). An increase in the BALI score was significantly associated with cognitive test scores (p = 0.008 for the Mini-Mental State Examination MMSE and p = 0.013 for the Alzheimer's Disease Assessment Scale-Cognitive Subscale ADAS-cog) in a model that adjusted for age, sex, and education. Conclusion: The BALI rating quantified the progression of brain deficits over two years, which is associated with cognitive decline. BALI ratings may be used to help summarize AD-associated structural variations. \ua9 2011 The authors and IOS Press. All rights reserved.Peer reviewed: YesNRC publication: Ye
    corecore