29 research outputs found

    The role of polaronic states in the enhancement of CO oxidation by single-atom Pt/CeO2

    Get PDF
    Single Atom Catalysts (SACs) have shown that the miniaturization of the active site implies new phenomena like dynamic charge transfer between isolated metal atoms and the oxide. To obtain direct proof of this character is challenging, as many experimental techniques provide averaged properties or have limitations with poorly conductive materials, leaving kinetic measurements from catalytic testing as the only reliable reference. Here we present an integrated Density Functional Theory-Microkinetic model including ground and metastable states to address the reactivity of Pt1/CeO2 for CO oxidation. Our results agree with experimentally available kinetic data in the literature and show that CO oxidation activity of Pt1/CeO2 is tunable via the electronic properties of the support. Particularly, samples with higher n-doping via oxygen depletion should be better in CO oxidation, as they help maintain the active state Pt0 of the catalyst. This provides an alternative strategy for tuning the performance of low-temperature oxidations in single-atom catalysts via charge transfer control

    Highly Stable and Reactive Platinum Single Atoms on Oxygen Plasma-Functionalized CeO<sub>2</sub> Surfaces: Nanostructuring and Peroxo Effects

    Get PDF
    Atomically dispersed precious metals on oxide supports have recently become increasingly interesting catalytic materials. Nonetheless, their non-trivial preparation and limited thermal and environmental stability constitutes an issue for their potential applications. Here we demonstrate that an oxygen plasma pre-treatment of the ceria (CeO2 ) surface serves to anchor Pt single atoms, making them active and resistant towards sintering in the CO oxidation reaction. Through a combination of experimental results obtained on well-defined CeO2 films and theory, we show that the O2 plasma causes surface nanostructuring and the formation of surface peroxo (O22-) species, favoring the uniform and dense distribution of isolated strongly bonded Pt2+ atoms. The promotional effect of the plasma treatment was further demonstrated on the powder Pt/CeO2 catalysts. We believe that plasma functionalization can be applied to other metal/oxide systems to achieve tunable and stable catalysts with a high density of active sites

    Highly Stable and Reactive Platinum Single Atoms on Oxygen Plasma-Functionalized CeO<sub>2</sub> Surfaces: Nanostructuring and Peroxo Effects

    Get PDF
    Atomically dispersed precious metals on oxide supports have recently become increasingly interesting catalytic materials. Nonetheless, their non-trivial preparation and limited thermal and environmental stability constitutes an issue for their potential applications. Here we demonstrate that an oxygen plasma pre-treatment of the ceria (CeO2 ) surface serves to anchor Pt single atoms, making them active and resistant towards sintering in the CO oxidation reaction. Through a combination of experimental results obtained on well-defined CeO2 films and theory, we show that the O2 plasma causes surface nanostructuring and the formation of surface peroxo (O22-) species, favoring the uniform and dense distribution of isolated strongly bonded Pt2+ atoms. The promotional effect of the plasma treatment was further demonstrated on the powder Pt/CeO2 catalysts. We believe that plasma functionalization can be applied to other metal/oxide systems to achieve tunable and stable catalysts with a high density of active sites
    corecore