139 research outputs found

    Critiques on the Ideologies of Contemporary Bedhayan Dances

    Full text link
    This present paper provides a descriptive analysis toward a traditional court dance called Bedhaya, one of the cultural products of the Javanese community in Surakarta which evolved into its modern version Bedhayan due to the flow of global culture. By applying the theories of hermeneutics, ideology, aesthetics and Semiotics, the data are inferred according to the purposed questions. The inquiry is directed to infer the factors encompassing Bedhaya dance such as its emergence and the development, relationship with the existence and its role in the society, the relationship with systems within the society or with various interests. The results as inferred from the data obtained views in looking at the development on the classical dance of Bedhaya into Bedhayan left worthy of critical assessments. The reality of Bedhayan dance in the view of art as an ideology, from the outside, appears that the choreograhers/artists can freely express their creative ideas in the context of the fight agains the classical culture which is strongly enacted by the myths and power of the rulling king. However, it should be noted that Bedhayan dance artists which have managed to bring the classical bedhaya dance out of the walls of the Kraton also in essence always work in the confines of the iron curtain of a creativity called β€˜ideology'. Whether consciously or not, being forced or sincere in living it, these choreographers actually fall into the life orientation which solely concerns the fulfillment of material needs

    Rediscovery of Impatiens khasiana Hook.f. after more than a century

    Get PDF
    Impatiens khasiana Hook.f. (Balsaminaceae) has been rediscovered after a period of 129 years from Meghalaya, in north-eastern India. A detailed description from living specimens, coloured photographs and other relevant information are provided for easy identification. The name I. khasiana Hook.f. is here lectotypified

    Neuron-glia crosstalk mediate the neurotoxic effects of ketamine via extracellular vesicles

    Get PDF
    Background: General anesthetics (GA) are associated with neurodevelopmental abnormalities including cell death, cognitive and behavioral changes. There is now powerful evidence for non-cell autonomous mechanisms in almost every pathological condition in the brain, especially relevant to glial cells, mainly astrocytes and microglia, that exhibit structural and functional contacts with neurons. These interactions were recently reported to occur via the secretion of extracellular vesicles (EVs). Here, we employed primary human neural cells to analyze ketamine effects focusing on the functions of glial cells and their polarization/differentiation state. We also explored the roles of extracellular vesicles (EVs) and different components of the BDNF pathway. Methods: Ketamine effects were analyzed on human neuronal and glial cell proliferation and apoptosis and astrocytic (A1/A2 ) and microglial (M1/M2) cell activation were analyzed. The impact of the neuron-glial cell interactions in the neurotoxic effects of ketamine was analyzed using transwell co-cultures. The role of the brainderived neurotrophic factor (BDNF) pathway, was analyzed using RT-PCR, ELISA western blot and gene silencing. EVs secreted by ketamine-treated cells were isolated, characterized and analyzed for their effects in neuron-glia cell interactions. Data were analyzed using analysis of variance or a Student\u27s t test with correction for data sets with unequal variances. Results: Ketamine induced neuronal and oligodendrocytic cell apoptosis and promoted the expression of proinflammatory astrocytes (A1) and microglia (M1) phenotypes. Astrocytes and microglia enhanced the neurotoxic effects of ketamine on neuronal cells, whereas neurons increased oligodendrocyte cell death. Ketamine modulated different components in the BDNF pathway: decreasing BDNF secretion in neurons and astrocytes while increasing the expression of p75 in neurons and oligodendrocytes. In addition, ketamine treatment increased the lncRNA BDNF-AS levels and the secretion of pro-BDNF secretion. We found an important role of EVs secreted by ketamine-treated astrocytes in neuronal cell death by delivering BDNF-AS. Conclusions: Ketamine neurotoxicity involves both autonomous and non-cell autonomous mechanisms andomponents of the BDNF pathway expressed by neurons and glial cells represent major regulators of ketamine effects. We demonstrated for the first time a role of EVs as important mediators of ketamine effects by the delivery of specific non-coding RNAs. These results may contribute to a better understanding of cellular and molecular mechanisms underlying ketamine neurotoxic effects in humans and to the development of potential approaches to decrease its neurodevelopmental impact

    The interplay between chromosome stability and cell cycle control explored through gene–gene interaction and computational simulation

    Get PDF
    Chromosome stability models are usually qualitative models derived from molecular-genetic mechanisms for DNA repair, DNA synthesis, and cell division. While qualitative models are informative, they are also challenging to reformulate as precise quantitative models. In this report we explore how (A) laboratory experiments, (B) quantitative simulation, and (C) seriation algorithms can inform models of chromosome stability. Laboratory experiments were used to identify 19 genes that when over-expressed cause chromosome instability in the yeast Saccharomyces cerevisiae. To better understand the molecular mechanisms by which these genes act, we explored their genetic interactions with 18 deletion mutations known to cause chromosome instability. Quantitative simulations based on a mathematical model of the cell cycle were used to predict the consequences of several genetic interactions. These simulations lead us to suspect that the chromosome instability genes cause cell-cycle perturbations. Cellcycle involvement was confirmed using a seriation algorithm, which was used to analyze the genetic interaction matrix to reveal an underlying cyclical pattern. The seriation algorithm searched over 1014 possible arrangements of rows and columns to find one optimal arrangement, which correctly reflects events during cell cycle phases. To conclude, we illustrate how the molecular mechanisms behind these cell cycle events are consistent with established molecular interaction maps

    Preliminary investigation on taxonomic status of sympatric Tylonycteris species in Malaysia

    Get PDF
    Tylonycteris or flat-headed bat is known for its taxonomic complex within this genus. This study attempts to investigate the complexity within Tylonycteris using morphometric approach. The result from 34 morphological characters of hierarchical tree constructed two major groups splitting each respective Tylonycteris species into Malaysia Peninsular and Borneo populations. It is suggested to revise the species name according to type specimen, as proposed by recent previous study. Conservation and taxonomic status of Tylonycteris requires immediate reassessment due to the cryptic nature of these species

    A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens

    Get PDF
    Alleles that confer multiple disease resistance (MDR) are valuable in crop improvement, although the molecular mechanisms underlying their functions remain largely unknown. A quantitative trait locus, qMdr 9.02, associated with resistance to three important foliar maize diseases - southern leaf blight, gray leaf spot and northern leaf blight - has been identified on maize chromosome 9. Through fine-mapping, association analysis, expression analysis, insertional mutagenesis and transgenic validation, we demonstrate that ZmCCoAOMT2, which encodes a caffeoyl-CoA O-methyltransferase associated with the phenylpropanoid pathway and lignin production, is the gene within qMdr 9.02 conferring quantitative resistance to both southern leaf blight and gray leaf spot. We suggest that resistance might be caused by allelic variation at the level of both gene expression and amino acid sequence, thus resulting in differences in levels of lignin and other metabolites of the phenylpropanoid pathway and regulation of programmed cell death

    Study of FoxA Pioneer Factor at Silent Genes Reveals Rfx-Repressed Enhancer at Cdx2 and a Potential Indicator of Esophageal Adenocarcinoma Development

    Get PDF
    Understanding how silent genes can be competent for activation provides insight into development as well as cellular reprogramming and pathogenesis. We performed genomic location analysis of the pioneer transcription factor FoxA in the adult mouse liver and found that about one-third of the FoxA bound sites are near silent genes, including genes without detectable RNA polymerase II. Virtually all of the FoxA-bound silent sites are within conserved sequences, suggesting possible function. Such sites are enriched in motifs for transcriptional repressors, including for Rfx1 and type II nuclear hormone receptors. We found one such target site at a cryptic β€œshadow” enhancer 7 kilobases (kb) downstream of the Cdx2 gene, where Rfx1 restricts transcriptional activation by FoxA. The Cdx2 shadow enhancer exhibits a subset of regulatory properties of the upstream Cdx2 promoter region. While Cdx2 is ectopically induced in the early metaplastic condition of Barrett's esophagus, its expression is not necessarily present in progressive Barrett's with dysplasia or adenocarcinoma. By contrast, we find that Rfx1 expression in the esophageal epithelium becomes gradually extinguished during progression to cancer, i.e, expression of Rfx1 decreased markedly in dysplasia and adenocarcinoma. We propose that this decreased expression of Rfx1 could be an indicator of progression from Barrett's esophagus to adenocarcinoma and that similar analyses of other transcription factors bound to silent genes can reveal unanticipated regulatory insights into oncogenic progression and cellular reprogramming

    Analysis of Transcriptional Regulatory Pathways of Photoreceptor Genes by Expression Profiling of the Otx2-Deficient Retina

    Get PDF
    In the vertebrate retina, the Otx2 transcription factor plays a crucial role in the cell fate determination of both rod and cone photoreceptors. We previously reported that Otx2 conditional knockout (CKO) mice exhibited a total absence of rods and cones in the retina due to their cell fate conversion to amacrine-like cells. In order to investigate the entire transcriptome of the Otx2 CKO retina, we compared expression profile of Otx2 CKO and wild-type retinas at P1 and P12 using microarray. We observed that expression of 101- and 1049-probe sets significantly decreased in the Otx2 CKO retina at P1 and P12, respectively, whereas, expression of 3- and 4149-probe sets increased at P1 and P12, respectively. We found that expression of genes encoding transcription factors involved in photoreceptor development, including Crx, Nrl, Nr2e3, Esrrb, and NeuroD, was markedly down-regulated in the Otx2 CKO at both P1 and P12. Furthermore, we identified three human retinal disease loci mapped in close proximity to certain down-regulated genes in the Otx2 CKO retina including Ccdc126, Tnfsf13 and Pitpnm1, suggesting that these genes are possibly responsible for these diseases. These transcriptome data sets of the Otx2 CKO retina provide a resource on developing rods and cones to further understand the molecular mechanisms underlying photoreceptor development, function and disease

    Dopaminergic Influences on Emotional Decision Making in Euthymic Bipolar Patients

    Get PDF
    We recently reported that the D2/D3 agonist pramipexole may have pro-cognitive effects in euthymic patients with bipolar disorder (BPD); however, the emergence of impulse-control disorders has been documented in Parkinson\u27s disease (PD) after pramipexole treatment. Performance on reward-based tasks is altered in healthy subjects after a single dose of pramipexole, but its potential to induce abnormalities in BPD patients is unknown. We assessed reward-dependent decision making in euthymic BPD patients pre- and post 8 weeks of treatment with pramipexole or placebo by using the Iowa Gambling Task (IGT). The IGT requires subjects to choose among four card decks (two risky and two conservative) and is designed to promote learning to make advantageous (conservative) choices over time. Thirty-four BPD patients completed both assessments (18 placebo and 16 pramipexole). Baseline performance did not differ by treatment group (F = 0.63; p = 0.64); however, at week 8, BPD patients on pramipexole demonstrated a significantly greater tendency to make increasingly high-risk, high-reward choices across the five blocks, whereas the placebo group\u27s pattern was similar to that reported in healthy individuals (treatment x time x block interaction,
    • …
    corecore