10 research outputs found

    Therapeutic Effect of a Novel Oxazolidinone, DA-7867, in BALB/c Mice Infected with Nocardia brasiliensis

    Get PDF
    Actinomycetoma is an infectious disease of tropical and subtropical regions produced by actinobacteria of the genera Nocardia, Streptomyces, and Actinomadura. Therapeutic alternatives are scarce and include trimethoprim-sulfamethoxazole, diaminodiphenylsulfone, amoxicillin-clavulanate, imipenem, and amikacin. Oxazolidinones are a new class of antimicrobials with a completely different cellular target; the first compound in the market, linezolid, was introduced in the year 2000. It is active against many species of Nocardia and other aerobic actinomycetes; however, the long-term application in human subjects produces side effects including peripheral neuropathy and mielossupression. Therefore, it is important to screen other oxazolidinones with higher activity and less toxicity. In the present work, we tested DA-7867, a new oxazolidinone, in an experimental mouse model. The drug is active in vivo and decreases the production of lesions using only one dose a day in contrast to linezolid, which needs to be injected three times a day. Although it was tested on N. brasiliensis, it can possibly be active (once it is accepted for its use in humans) against Actinomadura spp and Streptomyces spp, which are frequently found in places of Africa and India where actinomycetoma is also an important consult in dermatology

    Withanolides and related steroids

    Get PDF
    Since the isolation of the first withanolides in the mid-1960s, over 600 new members of this group of compounds have been described, with most from genera of the plant family Solanaceae. The basic structure of withaferin A, a C28 ergostane with a modified side chain forming a ÎŽ-lactone between carbons 22 and 26, was considered for many years the basic template for the withanolides. Nowadays, a considerable number of related structures are also considered part of the withanolide class; among them are those containing Îł-lactones in the side chain that have come to be at least as common as the ÎŽ-lactones. The reduced versions (Îł and ÎŽ-lactols) are also known. Further structural variations include modified skeletons (including C27 compounds), aromatic rings and additional rings, which may coexist in a single plant species. Seasonal and geographical variations have also been described in the concentration levels and types of withanolides that may occur, especially in the Jaborosa and Salpichroa genera, and biogenetic relationships among those withanolides may be inferred from the structural variations detected. Withania is the parent genus of the withanolides and a special section is devoted to the new structures isolated from species in this genus. Following this, all other new structures are grouped by structural types. Many withanolides have shown a variety of interesting biological activities ranging from antitumor, cytotoxic and potential cancer chemopreventive effects, to feeding deterrence for several insects as well as selective phytotoxicity towards monocotyledoneous and dicotyledoneous species. Trypanocidal, leishmanicidal, antibacterial, and antifungal activities have also been reported. A comprehensive description of the different activities and their significance has been included in this chapter. The final section is devoted to chemotaxonomic implications of withanolide distribution within the Solanaceae. Overall, this chapter covers the advances in the chemistry and biology of withanolides over the last 16 years.Fil: Misico, Rosana Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂ­mica OrgĂĄnica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Unidad de MicroanĂĄlisis y MĂ©todos FĂ­sicos Aplicados a la QuĂ­mica OrgĂĄnica (i); ArgentinaFil: Nicotra, V.. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico CĂłrdoba. Instituto Multidisciplinario de BiologĂ­a Vegetal (p); Argentina. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂ­micas. Departamento de QuĂ­mica OrgĂĄnica; ArgentinaFil: Oberti, Juan Carlos MarĂ­a. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico CĂłrdoba. Instituto Multidisciplinario de BiologĂ­a Vegetal (p); Argentina. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂ­micas. Departamento de QuĂ­mica OrgĂĄnica; ArgentinaFil: Barboza, Gloria Estela. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico CĂłrdoba. Instituto Multidisciplinario de BiologĂ­a Vegetal (p); Argentina. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂ­micas. Departamento de Farmacia; ArgentinaFil: Gil, Roberto Ricardo. University Of Carnegie Mellon; Estados UnidosFil: Burton, Gerardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂ­mica OrgĂĄnica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Unidad de MicroanĂĄlisis y MĂ©todos FĂ­sicos Aplicados a la QuĂ­mica OrgĂĄnica (i); Argentin

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Development of Health Products from Natural Sources

    No full text

    Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial

    No full text

    Nitric Oxide and Synaptic Dynamics in the Adult Brain: Physiopathological Aspects

    No full text
    corecore