866 research outputs found

    Influence of HIV/AIDS Counselling Services on the Quality of Life of Church Members in Selected Churches in Nakuru Municipality, Kenya

    Get PDF
    Globally and in the Africa continent HIV/AIDS has become a pandemic that has affected more than 34 million people. The world has responded to the pandemic by creating counselling services to improve the quality of life. Churches are increasingly getting involved in HIV/AIDS Counselling Services to help improve the quality of life of church members in Nakuru Municipality. However, no studies have been conducted to assess the influence of HIV/AIDS counselling services on the quality of life of church members in Nakuru Municipality. The purpose of this study was to assess the influence of HIV/AIDS counselling services on the quality of life of church members in selected churches in Nakuru Municipality. This research adopted an ex Post facto causal comparative research design. The target population of the study was Shabab Africa Inland Church, Nakuru West -Presbyterian Church of East Africa- and Christ the King Cathedral- Catholic Church in Nakuru Municipality with a population of five thousand, six hundred and forty three (5643) members. Accessible population of 225 respondents was the sample for the study; these included 3 pastors, 27 men, 114 women, 75 youth, and six counsellors. Questionnaires were used to collect data. Experts from the Department of Psychology, Counselling and Educational Foundations were consulted to assess the content, construction and face validity of the questionnaires and a pilot study was conducted in Deliverance Church Nakuru. The reliability of questionnaires was estimated by use of Cronbach alpha reliability coefficient where values above 0.70 were accepted. Data was analysed using descriptive statistics (frequencies and percentages) using the Statistical Package for Social Science (SPSS) programme. The study recommends and the government in motivating people to get involved in establishing and utilising counselling services to enhance the quality of life of the people in churches in Nakuru County

    Responses of nematode abundances to increased and reduced rainfall under field conditions : a meta-analysis

    Get PDF
    Ecosystems are projected to experience altered precipitation patterns associated with climate change, with some areas becoming wetter and others drier. Both above- and belowground communities will be impacted by such rainfall changes, yet research has predominantly focused on the flora and fauna aboveground. Still, there is a growing body of literature for the effects of altered precipitation on soil fauna. Nematodes are diverse and abundant in most soils, represent multiple trophic levels, and influence essential soil processes, making this group a good proxy for broader impacts on soil food webs. Hence, we assessed the effects of increased and reduced rainfall amount on total and trophic-level abundances of nematodes using a meta-analytical approach based on 46 independent observations from 37 field studies and tested whether effects differed among ecosystem types and with treatment duration (1 year, long term). Overall, total and trophic group's abundances, except fungal feeders, were negatively impacted by reduced rainfall irrespectively of treatment duration. Increased rainfall had a positive effect on total abundances and plant parasitic nematodes, but only in longer term studies (>1 year). The impacts of altered rainfall were consistent across the ecosystems studied; however, most studies focus on grasslands and deserts, making it difficult to draw broad generalizations. Reductions in rainfall are therefore likely to decrease soil nematode abundance, with less pronounced effects on fungal feeders. Increased rainfall, on the other hand, may favor plant parasites, likely due to increased plant productivity. Hence, projections of reduced rainfall will have significant negative impacts on nematode abundances, at least in grasslands and deserts, with cascading effects on soil processes

    Viral complementation allows HIV-1 replication without integration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The integration of HIV-1 DNA into cellular chromatin is required for high levels of viral gene expression and for the production of new virions. However, the majority of HIV-1 DNA remains unintegrated and is generally considered a replicative dead-end. A limited amount of early gene expression from unintegrated DNA has been reported, but viral replication does not proceed further in cells which contain only unintegrated DNA. Multiple infection of cells is common, and cells that are productively infected with an integrated provirus frequently also contain unintegrated HIV-1 DNA. Here we examine the influence of an integrated provirus on unintegrated HIV-1 DNA (uDNA).</p> <p>Results</p> <p>We employed reporter viruses and quantitative real time PCR to examine gene expression and virus replication during coinfection with integrating and non-integrating HIV-1. Most cells which contained only uDNA displayed no detected expression from fluorescent reporter genes inserted into early (Rev-independent) and late (Rev-dependent) locations in the HIV-1 genome. Coinfection with an integrated provirus resulted in a several fold increase in the number of cells displaying uDNA early gene expression and efficiently drove uDNA into late gene expression. We found that coinfection generates virions which package and deliver uDNA-derived genomes into cells; in this way uDNA completes its replication cycle by viral complementation. uDNA-derived genomes undergo recombination with the integrated provirus-derived genomes during second round infection.</p> <p>Conclusion</p> <p>This novel mode of retroviral replication allows survival of viruses which would otherwise be lost because of a failure to integrate, amplifies the effective amount of cellular coinfection, increases the replicating HIV-1 gene pool, and enhances the opportunity for diversification through errors of polymerization and recombination.</p

    Polymer Bound Photobase Generators And Photoacid Generators For Pitch Division Lithography

    Get PDF
    The semiconductor industry is pursuing several process options that provide pathways to printing images smaller than the theoretical resolution limit of 193 nm projection scanners. These processes include double patterning, side wall deposition and pitch division. Pitch doubling lithography (PDL), the achievement of pitch division by addition of a photobase generator (PBG) to typical 193 nm resist formulations was recently presented. 1 Controlling the net acid concentration as a function of dose by incorporating both a photoacid generator (PAG) and a PBG in the resist formulation imparts a resist dissolution rate response modulation at twice the frequency of the aerial image. Simulation and patterning of 45 nm half pitch L/S patterns produced using a 90 nm half pitch mask were reported. 2 Pitch division was achieved, but the line edge roughness of the resulting images did not meet the current standard. To reduce line edge roughness, polymer bound PBGs and polymer bound PAGs were investigated in the PDL resist formulations. The synthesis, purification, analysis, and functional performance of various polymers containing PBG or PAG monomers are described herein. Both polymer bound PBG with monomeric PAG and polymer bound PAG with monomeric PBG showed a PDL response. The performance of the polymer bound formulations is compared to the same formulations with small molecule analogs of PAG and PBG.Chemical Engineerin

    Women Filmmakers in the United Arab Emirates

    Get PDF
    This entry provides an introduction to the work of and the challenges faced by women filmmakers in the United Arab Emirates while at the same time providing an overview of the emerging film industry in the country. The fact that these women claim the power of representation and start telling their stories against the backdrop of a conservative, patriarchal society, obviously opens up space for gender redefinition. Overall, it seems that their films reveal a preference for strong, interesting women that fight for a meaningful life against the backdrop of a globalized society that has left women weaker and more fragile, with less obvious choices and possibilities for fulfillment. As their female characters claim center stage, both traditional and contemporary constructions of gender are called into question and popular stereotypes about Emirati women are challenged

    Photobase Generator Enabled Pitch Division: A Progress Report

    Get PDF
    Pitch division lithography (PDL) with a photobase generator (PBG) allows printing of grating images with twice the pitch of a mask. The proof-of-concept has been published in the previous paper[1, 2] and demonstrated by others[1]. Forty five nm half-pitch (HP) patterns were produced using a 90nm HP mask, but the image had line edge roughness (LER) that does not meet requirements. Efforts have been made to understand and improve the LER in this process. Challenges were summarized toward low LER and good performing pitch division. Simulations and analysis showed the necessity for an optical image that is uniform in the z direction in order for pitch division to be successful. Two-stage PBGs were designed for enhancement of resist chemical contrast. New pitch division resists with polymer-bound PAGs and PBGs, and various PBGs were tested. This paper focuses on analysis of the LER problems and efforts to improve patterning performance in pitch division lithography.Chemical Engineerin

    De Haas-van Alphen oscillations in the charge-density wave compound lanthanum tritelluride (LaTe_3)

    Full text link
    De Haas-van Alphen oscillations were measured in lanthanum tritelluride (LaTe_3) to probe the partially gapped Fermi surface resulting from charge density wave (CDW) formation. Three distinct frequencies were observed, one of which can be correlated with a FS sheet that is unaltered by CDW formation. The other two frequencies arise from FS sheets that have been reconstructed in the CDW state.Comment: 8 page

    Antitumor activity from antigen-specific CD8 T cells generated in vivo from genetically engineered human hematopoietic stem cells

    Get PDF
    The goal of cancer immunotherapy is the generation of an effective, stable, and self-renewing antitumor T-cell population. One such approach involves the use of high-affinity cancer-specific T-cell receptors in gene-therapy protocols. Here, we present the generation of functional tumor-specific human T cells in vivo from genetically modified human hematopoietic stem cells (hHSC) using a human/mouse chimera model. Transduced hHSC expressing an HLA-A*0201–restricted melanoma-specific T-cell receptor were introduced into humanized mice, resulting in the generation of a sizeable melanoma-specific naïve CD8^+ T-cell population. Following tumor challenge, these transgenic CD8^+ T cells, in the absence of additional manipulation, limited and cleared human melanoma tumors in vivo. Furthermore, the genetically enhanced T cells underwent proper thymic selection, because we did not observe any responses against non–HLA-matched tumors, and no killing of any kind occurred in the absence of a human thymus. Finally, the transduced hHSC established long-term bone marrow engraftment. These studies present a potential therapeutic approach and an important tool to understand better and to optimize the human immune response to melanoma and, potentially, to other types of cancer
    corecore