2,798 research outputs found

    Analytical solution for the electric field in a half space conductor due to alternating current injected at the surface

    Get PDF
    An analytical expression for the electric field in a half space conductor, due to alternating current injected at the surface, is derived. Assuming that the injected current flows in wires perpendicular to the surface of the test piece, the problem can be formulated in terms of a single, transverse magnetic, potential. Considering at first one wire, the cylindrical symmetry permits simplification of the calculation by use of the Hankel transform. The final result for a system with two current-carrying wires is obtained by superposition

    Infinite Graphic Matroids

    Get PDF
    An infinite matroid is graphic if all of its finite minors are graphic and the intersection of any circuit with any cocircuit is finite. We show that a matroid is graphic if and only if it can be represented by a graph-like topological space: that is, a graph-like space in the sense of Thomassen and Vella. This extends Tutte’s characterization of finite graphic matroids. Working in the representing space, we prove that any circuit in a 3-connected graphic matroid is countable

    Start to end simulations of the ERL prototype at Daresbury Laboratory

    Get PDF
    Daresbury Laboratory is currently building an Energy Recovery Linac Prototype (ERLP) that will serve as a research and development facility for the study of beam dynamics and accelerator technology important to the design and construction of the proposed 4th Generation Light Source (4GLS) project. Two major objectives of the ERLP are the demonstration of energy recovery and of energy recovery from a beam disrupted by an FEL interaction as supplied by an infrared oscillator system. In this paper we present start-to-end simulations of the ERLP including such an FEL interaction. The beam dynamics in the highbrightness injector, which consists of a DC photocathode Gun and a superconducting booster, have been modelled using the particle tracking code ASTRA. After the booster the particles have been tracked with the code elegant. The 3D code GENESIS 1.3 was used to model the FEL interaction with the electron beam at 35 MeV. A brief summary of impedance and wakefield calculations for the whole machine is also given

    Precision measurement of the branching ratio in the 6P3/2 decay of BaII with a single trapped ion

    Full text link
    We present a measurement of the branching ratios from the 6P3/2 state of BaII into all dipoleallowed decay channels (6S1/2, 5D3/2 and 5D5/2). Measurements were performed on single 138Ba+ ions in a linear Paul trap with a frequency-doubled mode-locked Ti:Sapphire laser resonant with the 6S1/2->6P3/2 transition at 455 nm by detection of electron shelving into the dark 5D5/2 state. By driving a pi Rabi rotation with a single femtosecond pulse, a absolute measurement of the branching ratio to 5D5/2 state was performed. Combined with a measurement of the relative decay rates into 5D3/2 and 5D5/2 states performed with long trains of highly attenuated 455 nm pulses, it allowed the extraction of the absolute ratios of the other two decays. Relative strengths normalized to unity are found to be 0.756+/-0.046, 0.0290+/-0.0015 and 0.215+/-0.0064 for 6S1/2, 5D3/2 and 5D5/2 respectively. This approximately constitutes a threefold improvement over the best previous measurements and is a sufficient level of precision to compare to calculated values for dipole matrix elements.Comment: 6 pages, 5 figures, 1 tabl

    B Physics on the Lattice: Present and Future

    Get PDF
    Recent experimental measurements and lattice QCD calculations are now reaching the precision (and accuracy) needed to over-constrain the CKM parameters ρˉ\bar\rho and ηˉ\bar\eta. In this brief review, I discuss the current status of lattice QCD calculations needed to connect the experimental measurements of BB meson properties to quark flavor-changing parameters. Special attention is given to BπνB\to\pi\ell\nu, which is becoming a competitive way to determine Vub|V_{ub}|, and to B0B0ˉB^0-\bar{B^0} mixings, which now include reliable extrapolation to the physical light quark mass. The combination of the recent measurement of the BsB_s mass difference and current lattice calculations dramatically reduces the uncertainty in Vtd|V_{td}|. I present an outlook for reducing dominant lattice QCD uncertainties entering CKM fits, and I remark on lattice calculations for other decay channels.Comment: Invited brief review for Mod. Phys. Lett. A. 15 pages. v2: typos corrected, references adde

    Eugenio Lecaldano on Bioethics

    Get PDF
    Eugenio Lecaldano offers an important contribution to the tradition of italian liberal thought. In his book on bioethics he deals with the subject’s most relevant topics by taking a utilitarian perspective , which clearly demonstrates the influence of J.S. Mill’s philosophy. The indication of some significant analogies and distinction among different moral problems is one of the most interesting and useful aspects of Lecaldano’s work

    Research on the Geography of Agricultural Change: Redundant or Revitalized?

    Get PDF
    Future research directions for agricultural geography were the subject of debate in Area in the late 1980s. The subsequent application of political economy ideas undoubtedly revived interest in agricultural research. This paper argues that agricultural geography contains greater diversity than the dominant political economy discourse would suggest. It reviews ‘other’ areas of agricultural research on policy, post-productivism, people, culture and animals, presenting future suggestions for research. They should ensure that agricultural research continues revitalized rather than redundant into the next millennium

    Electrostatic considerations affecting the calculated HOMO-LUMO gap in protein molecules.

    Get PDF
    A detailed study of energy differences between the highest occupied and lowest unoccupied molecular orbitals (HOMO-LUMO gaps) in protein systems and water clusters is presented. Recent work questioning the applicability of Kohn-Sham density-functional theory to proteins and large water clusters (E. Rudberg, J. Phys.: Condens. Mat. 2012, 24, 072202) has demonstrated vanishing HOMO-LUMO gaps for these systems, which is generally attributed to the treatment of exchange in the functional used. The present work shows that the vanishing gap is, in fact, an electrostatic artefact of the method used to prepare the system. Practical solutions for ensuring the gap is maintained when the system size is increased are demonstrated. This work has important implications for the use of large-scale density-functional theory in biomolecular systems, particularly in the simulation of photoemission, optical absorption and electronic transport, all of which depend critically on differences between energies of molecular orbitals.Comment: 13 pages, 4 figure
    corecore