59 research outputs found

    Effect of oxygen fugacity on the storage of water in wadsleyite and olivine in H and H–C fluids and implications for melting atop the transition zone

    Get PDF
    This study aims to experimentally constrain the water storage capacities of olivine and wadsleyite at a depth near 410 km (12–14 GPa) under water-saturated conditions, as a function of temperature, oxygen fugacity, and the presence of carbon (molar H / C of 2). Experiments have been conducted in the multi-anvil press, with sealed double capsules to preserve fluids, at 1200 to 1400 ∘C and three different oxygen fugacities fixed at the rhenium–rhenium oxide buffer (RRO), nickel–nickel oxide buffer (NNO), and iron-wüstite (IW) for oxidizing, intermediate, and reducing conditions, respectively. The water contents of minerals were measured by Raman spectroscopy that allows a very small beam size to be used and were cross-checked on a few samples with NanoSIMS analyses. We observe an effect, although slight, of fO2 on the water storage capacity of both wadsleyite and olivine and also on their solidus temperatures. At 1200 ∘C, the storage capacity of the nominally anhydrous minerals (NAMS) increases with increasing oxygen fugacity (from the IW to the RRO buffer) from 1 wt % to 1.5 wt % H2O in wadsleyite and from 0.1 wt % to 0.2 wt % in olivine, owing to the increase in H2O / H2 speciation in the fluid, whereas at 1400 ∘C the storage capacity decreases from 1 wt % to 0.75 wt % H2O in wadsleyite and down to 0.03 wt % for olivine. At high temperature, the water storage capacity is lowered due to melting, and the more oxidized the conditions are the more the solidus is depressed. Still, at 1400 ∘C and IW, wadsleyite can store substantial amounts of water: 0.8 wt % to 1 wt % H2O. The effect of carbon is to decrease water storage capacity in both wadsleyite and olivine by an average factor 2 at 1300–1400 ∘C. The trends in water storage as a function of fO2 and C presence are confirmed by NanoSIMS measurements. The solidus at IW without C is located between 1300 and 1400 ∘C in the wadsleyite stability field and drops to temperatures below 1300 ∘C in the olivine stability field. With the addition of C, the solidus is found between 1200 and 1300 ∘C in both olivine and wadsleyite stability fields.</p

    Noble Gases Analyses of Samples Synthesized at High P and T in a Multi Anvil Press Device: Protocol and Implications

    No full text
    International audienceNoble gases (He-Ne-Ar-Kr-Xe) in mantle-derived samples allow an undisputable tracing of different sources of materials. Concerning the deep mantle part, the study of noble gases suggests that a "primordial" component (which is non or partially degassed) exists. Nevertheless, this conclusion is challenged by several observations, both geophysical and geochemical, suggesting that contrariwise the mantle is now totally depleted, degassed or renewed by convection. Furthermore, the lack of experimental data disables quantitative modelling of geochemistry processes. It is still unknown how much the fractionations are dependent on the conditions on pressure, temperature and chemical composition in the mantle. Recent studies [1-3] suggest a more incompatible behavior for noble gases in comparison to their parent element (K for Ar, U + Th for He) in very specific conditions of pressure, temperature, and chemical composition. Nevertheless, those studies focus on only particular compositions or pressures or only one single noble gas. No exhaustive studies (of all nobles gases at different pressures, temperatures and compositions) were accomplished on this subject so far. We set up a new experimental protocol allowing the analyses of rare gases in samples synthesized under mantle conditions, at high pressures and temperatures. This new protocol associates the use of a gas loading device [4], a multi-anvil press device (INSU MAP, Clermont-Ferrand, France), a laser ablation coupled to mass- spectrometer for the noble gases analysis (excimer laser, λ = 193 nm), and a 3D profilometry device to quantify the amount of ablated material. We will present an application of these methods on the noble gases partitioning between solid and liquid natural phases in the 3-5 GPa pressure range and for temperature of 1400 to 1600°C. [1] E.M. Chamorro, R.A Brooker, J.-A Wartho, B.J. Wodd, S.P. Kelley and J.D. Blundy. Ar and K partitioning between clinopyroxene and silicate melt to 8 GPa. Geochimica et Cosmochimica Acta, 66: 507-519, 2002. [2] S.W. Parman, M.D. Kurz, S.R. Hart and T. L. Groove. Helium solubility in olivine and implication for high 3He/4He in ocean island basalts. Nature, 437: 1140-1143, 2005. [3] V.S. Heber, R.A. Brooker, S.P Kelley and B.J. Wood. Crystal-melt partitioning of nobles gases (helium, neon, argon, krypton and xenon) for olivine and clinopyroxene. Geochimica et Cosmochimica Acta, 71: 1041-1061. [4] S.L. Boetcher, Q. Guo and A. Montana. A simple device for loading gases in high-pressure experiments. American Mineralogist, 74: 1383-1384, 1989

    Noble Gases Analyses of Samples Synthesized at High P and T in a Multi Anvil Press Device: Protocol and Implications

    No full text
    International audienceNoble gases (He-Ne-Ar-Kr-Xe) in mantle-derived samples allow an undisputable tracing of different sources of materials. Concerning the deep mantle part, the study of noble gases suggests that a "primordial" component (which is non or partially degassed) exists. Nevertheless, this conclusion is challenged by several observations, both geophysical and geochemical, suggesting that contrariwise the mantle is now totally depleted, degassed or renewed by convection. Furthermore, the lack of experimental data disables quantitative modelling of geochemistry processes. It is still unknown how much the fractionations are dependent on the conditions on pressure, temperature and chemical composition in the mantle. Recent studies [1-3] suggest a more incompatible behavior for noble gases in comparison to their parent element (K for Ar, U + Th for He) in very specific conditions of pressure, temperature, and chemical composition. Nevertheless, those studies focus on only particular compositions or pressures or only one single noble gas. No exhaustive studies (of all nobles gases at different pressures, temperatures and compositions) were accomplished on this subject so far. We set up a new experimental protocol allowing the analyses of rare gases in samples synthesized under mantle conditions, at high pressures and temperatures. This new protocol associates the use of a gas loading device [4], a multi-anvil press device (INSU MAP, Clermont-Ferrand, France), a laser ablation coupled to mass- spectrometer for the noble gases analysis (excimer laser, λ = 193 nm), and a 3D profilometry device to quantify the amount of ablated material. We will present an application of these methods on the noble gases partitioning between solid and liquid natural phases in the 3-5 GPa pressure range and for temperature of 1400 to 1600°C. [1] E.M. Chamorro, R.A Brooker, J.-A Wartho, B.J. Wodd, S.P. Kelley and J.D. Blundy. Ar and K partitioning between clinopyroxene and silicate melt to 8 GPa. Geochimica et Cosmochimica Acta, 66: 507-519, 2002. [2] S.W. Parman, M.D. Kurz, S.R. Hart and T. L. Groove. Helium solubility in olivine and implication for high 3He/4He in ocean island basalts. Nature, 437: 1140-1143, 2005. [3] V.S. Heber, R.A. Brooker, S.P Kelley and B.J. Wood. Crystal-melt partitioning of nobles gases (helium, neon, argon, krypton and xenon) for olivine and clinopyroxene. Geochimica et Cosmochimica Acta, 71: 1041-1061. [4] S.L. Boetcher, Q. Guo and A. Montana. A simple device for loading gases in high-pressure experiments. American Mineralogist, 74: 1383-1384, 1989

    Noble Gases Analyses of Samples Synthesized at High P and T in a Multi Anvil Press Device: Protocol and Implications

    No full text
    International audienceNoble gases (He-Ne-Ar-Kr-Xe) in mantle-derived samples allow an undisputable tracing of different sources of materials. Concerning the deep mantle part, the study of noble gases suggests that a "primordial" component (which is non or partially degassed) exists. Nevertheless, this conclusion is challenged by several observations, both geophysical and geochemical, suggesting that contrariwise the mantle is now totally depleted, degassed or renewed by convection. Furthermore, the lack of experimental data disables quantitative modelling of geochemistry processes. It is still unknown how much the fractionations are dependent on the conditions on pressure, temperature and chemical composition in the mantle. Recent studies [1-3] suggest a more incompatible behavior for noble gases in comparison to their parent element (K for Ar, U + Th for He) in very specific conditions of pressure, temperature, and chemical composition. Nevertheless, those studies focus on only particular compositions or pressures or only one single noble gas. No exhaustive studies (of all nobles gases at different pressures, temperatures and compositions) were accomplished on this subject so far. We set up a new experimental protocol allowing the analyses of rare gases in samples synthesized under mantle conditions, at high pressures and temperatures. This new protocol associates the use of a gas loading device [4], a multi-anvil press device (INSU MAP, Clermont-Ferrand, France), a laser ablation coupled to mass- spectrometer for the noble gases analysis (excimer laser, λ = 193 nm), and a 3D profilometry device to quantify the amount of ablated material. We will present an application of these methods on the noble gases partitioning between solid and liquid natural phases in the 3-5 GPa pressure range and for temperature of 1400 to 1600°C. [1] E.M. Chamorro, R.A Brooker, J.-A Wartho, B.J. Wodd, S.P. Kelley and J.D. Blundy. Ar and K partitioning between clinopyroxene and silicate melt to 8 GPa. Geochimica et Cosmochimica Acta, 66: 507-519, 2002. [2] S.W. Parman, M.D. Kurz, S.R. Hart and T. L. Groove. Helium solubility in olivine and implication for high 3He/4He in ocean island basalts. Nature, 437: 1140-1143, 2005. [3] V.S. Heber, R.A. Brooker, S.P Kelley and B.J. Wood. Crystal-melt partitioning of nobles gases (helium, neon, argon, krypton and xenon) for olivine and clinopyroxene. Geochimica et Cosmochimica Acta, 71: 1041-1061. [4] S.L. Boetcher, Q. Guo and A. Montana. A simple device for loading gases in high-pressure experiments. American Mineralogist, 74: 1383-1384, 1989

    Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges

    No full text
    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity ( 3c1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to 3c3 7 10-3 S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 7 10-1 S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 \ub1 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front

    The role of Al-defects on the equation of state of Al-(Mg,Fe)SiO3 perovskite at high pressure and temperature

    No full text
    International audienceWe performed compression curves of aluminous silicate perovskite (Al–Pv) synthesized under various conditions of pressure, temperature and MgO or SiO2 activities, using laser-heated diamond anvil cell at the ESRF (Grenoble). We refined bulk moduli (K0) from 235 to 270 GPa, in agreement with the wide range of values reported in the literature. We observe that Al–Pv phase synthesized at high temperature, in the SiO2-rich system, is more compressible than Al–Pv phase synthesized at high pressure, in the MgO-rich system. As suggested by various authors, the resolution of this controversy rests on a better understanding of the crystal chemistry of Al in perovskite, which involves at least two competitive mechanisms, substitution of Si in the octahedral site only, or a coupled substitution on both Mg and Si sites. The vacancy mechanism is expected to reduce the K0 significantly, due to the presence of oxygen vacancies. All compression curves performed in this study can be explained by considering that the vacancy mechanism is favored at high temperatures and that the coupled mechanism is favored at high pressures. These trends agree well with previous reports. For (Mg,Fe)(Si,Al)O3 perovskite compositions relevant to the lower mantle, the two previous reports and our new data set for a MORB-type perovskite phase agree well with each other with higher K0 values between 260 and 270 GPa, compared with K0 = 253 GPa for the pure MgSiO3 phase suggested from previous studies. In these compounds, coupled substitution of Al3+ and Fe3+ cations leads to a well constrained crystal chemistry. Therefore, the low K0 value observed in some of the previous studies for Fe-free Al–Pv is likely to be irrelevant for mantle perovskite. Some questions may remain only for the mantle region just below the 670 km discontinuity, where pressures remain moderate, thus potentially allowing for at most 2% of oxygen vacancies. However, it is clear that using low K0 values to extrapolate to greater depths is unjustified
    corecore